Designing a binary neural network co-processor

M. Freeman, J. Austin
{"title":"Designing a binary neural network co-processor","authors":"M. Freeman, J. Austin","doi":"10.1109/DSD.2005.34","DOIUrl":null,"url":null,"abstract":"A correlation matrix memory (CMM) is a form of binary neural network, that can be used for high-speed approximate search and match operations on large unstructured datasets. Typically, the processing requirements for a CMM do not map efficiently onto a modern processor based system. Therefore, an application specific co-processor is normally used to improve performance. This paper outlines two possible FPGA based co-processors for executing core CMM operations based upon a compact bit vector (CBV) data format. This representation significantly increases a system's storage capacity, but reduces processing performance.","PeriodicalId":119054,"journal":{"name":"8th Euromicro Conference on Digital System Design (DSD'05)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th Euromicro Conference on Digital System Design (DSD'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2005.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A correlation matrix memory (CMM) is a form of binary neural network, that can be used for high-speed approximate search and match operations on large unstructured datasets. Typically, the processing requirements for a CMM do not map efficiently onto a modern processor based system. Therefore, an application specific co-processor is normally used to improve performance. This paper outlines two possible FPGA based co-processors for executing core CMM operations based upon a compact bit vector (CBV) data format. This representation significantly increases a system's storage capacity, but reduces processing performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值神经网络协处理器设计
相关矩阵记忆(CMM)是二值神经网络的一种形式,可用于大型非结构化数据集的高速近似搜索和匹配操作。通常,CMM的处理需求不能有效地映射到基于处理器的现代系统。因此,通常使用特定于应用程序的协处理器来提高性能。本文概述了两种可能的基于FPGA的协处理器,用于执行基于紧凑位矢量(CBV)数据格式的核心CMM操作。这种表示方式显著增加了系统的存储容量,但降低了处理性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A processor for testing mixed-signal cores in system-on-chip Educational tool for the demonstration of DfT principles based on scan methodologies Capturing processor architectures from protocol processing applications: a case study Power-composition profile driven co-synthesis with power management selection for dynamic and leakage energy reduction High-level synthesis in latency insensitive system methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1