Experimental and Numerical Study of Flow Through Horizontal Wellbore of the 180 Perforation Phasing

M. Mustafa, Q. Rishack, M. Abdulwahid
{"title":"Experimental and Numerical Study of Flow Through Horizontal Wellbore of the 180 Perforation Phasing","authors":"M. Mustafa, Q. Rishack, M. Abdulwahid","doi":"10.33971/bjes.22.1.2","DOIUrl":null,"url":null,"abstract":"This paper demonstrates experimental and numerical studies to investigate in perforation pipes with a phasing 180° and perforation densities 9 spm in a horizontal wellbore. The experimental study was conducted to investigate the phasing angle 180° in a horizontal wellbore. The wellbore has an inner diameter of 44 mm, as well as the length of the pipe is 2 m. For this purpose, a simulation model was created in the wellbore using the ANSYS FLUENT simulation software by using the standard k-𝜖 model and applied to the (CFD) with changing the axial flow from (40 - 160) lit/min and constant inflow through perforations from range (20 - 80) lit/min. Concerning the findings of this study, it was noticed that the total pressure drop (friction, acceleration, mixing) goes high as the total flow rate ratio increases. As well as, an increase of the inflow concerning the main flow rate ratio leads to an increase in the total pressure drop and a decrease in the productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 5.4 %. Also, the average velocity goes high with increasing the total flow rates and the velocity keeps increasing along the length of the pipe until it reaches its maximum value at the end of the pipe due to the effect of the perforations. It was concluded that there are the numerical and experimental results reflected a good agreement concerning the study of the flow-through perforations at 180° angle in terms of pressure drop and apparent friction factor, etc.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.22.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates experimental and numerical studies to investigate in perforation pipes with a phasing 180° and perforation densities 9 spm in a horizontal wellbore. The experimental study was conducted to investigate the phasing angle 180° in a horizontal wellbore. The wellbore has an inner diameter of 44 mm, as well as the length of the pipe is 2 m. For this purpose, a simulation model was created in the wellbore using the ANSYS FLUENT simulation software by using the standard k-𝜖 model and applied to the (CFD) with changing the axial flow from (40 - 160) lit/min and constant inflow through perforations from range (20 - 80) lit/min. Concerning the findings of this study, it was noticed that the total pressure drop (friction, acceleration, mixing) goes high as the total flow rate ratio increases. As well as, an increase of the inflow concerning the main flow rate ratio leads to an increase in the total pressure drop and a decrease in the productivity index. Furthermore, the percentage error of the total pressure drop between the numerical and experimental results in test 4 is about 5.4 %. Also, the average velocity goes high with increasing the total flow rates and the velocity keeps increasing along the length of the pipe until it reaches its maximum value at the end of the pipe due to the effect of the perforations. It was concluded that there are the numerical and experimental results reflected a good agreement concerning the study of the flow-through perforations at 180° angle in terms of pressure drop and apparent friction factor, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
180射孔分段水平井流动实验与数值研究
本文对水平井筒中相位为180°、射孔密度为9spm的射孔管进行了实验和数值研究。实验研究了水平井筒中180°的相位角。井筒内径为44 mm,管柱长度为2 m。为此,利用ANSYS FLUENT仿真软件,采用标准k- η - η模型,在井筒中建立仿真模型,并将轴向流量从(40 ~ 160)lit/min,射孔流量恒定在(20 ~ 80)lit/min范围内,应用于CFD。研究发现,随着总流量比的增大,总压降(摩擦、加速度、混合)增大。随着主流量比的增加,总压降增大,产能指数降低。试验4的总压降数值计算结果与实验结果的误差百分比约为5.4%。此外,平均流速随着总流量的增加而增加,并且随着管柱长度的增加,流速不断增加,直到在管柱末端达到最大值,这是由于射孔的影响。结果表明,数值计算结果与实验结果在180°角射孔的压降和表观摩擦系数等方面反映了较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Façade Design on Visual Pollution Case study: Peshawa-Qazi Street (100 m) in Erbil A Review of Intelligent Techniques Based Speed Control of Brushless DC Motor (BLDC) Design and Implementation of Smart Petrol Station A Numerical Study of Blade Geometry Effects in a Vertical-Axes Wind Turbines Review on Energy Harvesting from Wind-Induced Column Vibrations: Theories, Mechanisms, and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1