Hierarchical Region Merging for Multi-scale Image Segmentation

Xiaojun Ma, B. Peng, Xun Gong, Zeng Yu, Tianrui Li
{"title":"Hierarchical Region Merging for Multi-scale Image Segmentation","authors":"Xiaojun Ma, B. Peng, Xun Gong, Zeng Yu, Tianrui Li","doi":"10.1109/ISKE47853.2019.9170297","DOIUrl":null,"url":null,"abstract":"Image segmentation is a key computer vision technique that divides the pixels of an image into different blocks of distinct transactions. The multi-scale segmentation method is one of the image segmentation methods, which can extract the object regions of different scales. It has the potential to fully exploit the application of high resolution and complex scene images and is the research hotspots direction of image segmentation technology. In this work, a feasible image scale-aware algorithm is proposed. By using the segmentation results of the existing multi-scale segmentation algorithm, the global region’s hierarchical region is merged by the quantitative description of each hierarchical region feature to achieve the optimal scale of multi-scale segmentation. We validate the proposed method on different algorithms and data sets. The results have shown that the proposed method can solve the error caused by manual threshold setting and achieve the optimal selection of individual goals to a certain extent.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image segmentation is a key computer vision technique that divides the pixels of an image into different blocks of distinct transactions. The multi-scale segmentation method is one of the image segmentation methods, which can extract the object regions of different scales. It has the potential to fully exploit the application of high resolution and complex scene images and is the research hotspots direction of image segmentation technology. In this work, a feasible image scale-aware algorithm is proposed. By using the segmentation results of the existing multi-scale segmentation algorithm, the global region’s hierarchical region is merged by the quantitative description of each hierarchical region feature to achieve the optimal scale of multi-scale segmentation. We validate the proposed method on different algorithms and data sets. The results have shown that the proposed method can solve the error caused by manual threshold setting and achieve the optimal selection of individual goals to a certain extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层区域合并的多尺度图像分割
图像分割是一种关键的计算机视觉技术,它将图像的像素划分为不同的事务块。多尺度分割方法是图像分割方法中的一种,它可以提取不同尺度的目标区域。它具有充分开发高分辨率和复杂场景图像应用的潜力,是图像分割技术的研究热点方向。本文提出了一种可行的图像尺度感知算法。利用现有多尺度分割算法的分割结果,通过对各层次区域特征的定量描述,对全局区域的层次区域进行合并,实现多尺度分割的最优尺度。我们在不同的算法和数据集上验证了所提出的方法。结果表明,该方法可以解决人工阈值设置带来的误差,在一定程度上实现了个体目标的最优选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1