Autofocusing algorithm comparison in bright field microscopy for automatic vision aided cell micromanipulation

M. Y. Yu, M. Han, C. Shee, W. T. Ang
{"title":"Autofocusing algorithm comparison in bright field microscopy for automatic vision aided cell micromanipulation","authors":"M. Y. Yu, M. Han, C. Shee, W. T. Ang","doi":"10.1109/NANOMED.2010.5749811","DOIUrl":null,"url":null,"abstract":"Autofocusing is an essential technique in many machine vision aided microscopy application. This paper presents a comparison study of 6 autofocusing algorithms under bright field illumination: a) Normalized Variance (VAR), b) Tenengrad Gradient (TEN), c) DB06 wavelet filter (DB06), d) Fast Fourier Transform (FFT), e) Standard Deviation (STD) and f) Sum Modulus Difference (SMD). In the study, all the 6 algorithms are integrated with the exhaustive search technique and implemented using LabVIEW on a Pentium 4 desktop computer. A total of 2,204 microscope images of a micropipette tip are acquired at different microscope objective positions controlled by a high precision stepper motor under 2.8X magnification, are used to evaluate the performance of the algorithms in terms of processing speed, accuracy, consistency, sensitivity to image size and sensitivity to movement step resolution. It can be concluded that VAR and STD perform well in all performance measures.","PeriodicalId":446237,"journal":{"name":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2010.5749811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Autofocusing is an essential technique in many machine vision aided microscopy application. This paper presents a comparison study of 6 autofocusing algorithms under bright field illumination: a) Normalized Variance (VAR), b) Tenengrad Gradient (TEN), c) DB06 wavelet filter (DB06), d) Fast Fourier Transform (FFT), e) Standard Deviation (STD) and f) Sum Modulus Difference (SMD). In the study, all the 6 algorithms are integrated with the exhaustive search technique and implemented using LabVIEW on a Pentium 4 desktop computer. A total of 2,204 microscope images of a micropipette tip are acquired at different microscope objective positions controlled by a high precision stepper motor under 2.8X magnification, are used to evaluate the performance of the algorithms in terms of processing speed, accuracy, consistency, sensitivity to image size and sensitivity to movement step resolution. It can be concluded that VAR and STD perform well in all performance measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动视觉辅助细胞显微操作的明场显微镜自动聚焦算法比较
在许多机器视觉辅助显微镜应用中,自动对焦是一项必不可少的技术。本文对6种亮场照明下的自动聚焦算法进行了比较研究:a)归一化方差(VAR), b) Tenengrad梯度(TEN), c) DB06小波滤波(DB06), d)快速傅立叶变换(FFT), e)标准差(STD)和和模差(SMD)。在本研究中,所有6种算法都与穷举搜索技术相结合,并在Pentium 4台式计算机上使用LabVIEW实现。在2.8倍放大率下,在高精度步进电机控制下,在不同显微镜物镜位置获取2204张显微图像,从处理速度、精度、一致性、对图像大小的敏感性和对运动步进分辨率的敏感性等方面评价算法的性能。VAR和STD在各项绩效指标中均表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The design and investigation of model based internal model control for the regulation of hypnosis 3D matrix adhesions mediating mechanostranduction in hMSC-collagen constructs Measuring the molecular force of Burkitt's lymphoma patient cells using AFM Grain growth of Zinc Oxide films on quartz GlassTreated in N2/O2 atmosphere using microwave plasma Jet sintering system On chip superoxide dismutase assay for high-throughput screening of radioprotective activity of herbal plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1