Analysis of Piecewise Fractional Brownian Motion Signals and Textures

Samah Khawaled, Ido Zachevsky, Y. Zeevi
{"title":"Analysis of Piecewise Fractional Brownian Motion Signals and Textures","authors":"Samah Khawaled, Ido Zachevsky, Y. Zeevi","doi":"10.1109/ICSEE.2018.8646247","DOIUrl":null,"url":null,"abstract":"Piecewise Fractional Brownian motion (p-fBm) is a continuous non-stationary Gaussian process having stationary Gaussian increments, named piecewise fractional Gaussian noise (p-fGn). Unlike fractional Brownian motion (fBm) governed by a unique parameter (Hurst exponent), p-fBm is defined by three parameters: the Hurst exponent in low frequencies, the Hurst exponent in high frequencies and the threshold frequency, which separates the two regimes. In this paper, we present a synthesis method that generates a finite approximation of p-fBm series. Moreover, we analyze the synthesized p-fBm series and test the Gaussianity of both p-fBm and p-fGn. We test the stationarity of the first order increments (p-fGn) and explore an approach to estimation of the process Hurst parameters. Our contribution is relevant to modeling and analysis of certain textures that are characteristic of certain medical and other natural images.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piecewise Fractional Brownian motion (p-fBm) is a continuous non-stationary Gaussian process having stationary Gaussian increments, named piecewise fractional Gaussian noise (p-fGn). Unlike fractional Brownian motion (fBm) governed by a unique parameter (Hurst exponent), p-fBm is defined by three parameters: the Hurst exponent in low frequencies, the Hurst exponent in high frequencies and the threshold frequency, which separates the two regimes. In this paper, we present a synthesis method that generates a finite approximation of p-fBm series. Moreover, we analyze the synthesized p-fBm series and test the Gaussianity of both p-fBm and p-fGn. We test the stationarity of the first order increments (p-fGn) and explore an approach to estimation of the process Hurst parameters. Our contribution is relevant to modeling and analysis of certain textures that are characteristic of certain medical and other natural images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分段分数布朗运动信号和纹理的分析
分段分数阶布朗运动(p-fBm)是一种具有平稳高斯增量的连续非平稳高斯过程,称为分段分数阶高斯噪声(p-fGn)。与分数布朗运动(fBm)由唯一参数(赫斯特指数)控制不同,p-fBm由三个参数定义:低频赫斯特指数,高频赫斯特指数和阈值频率,阈值频率将两种状态分开。本文给出了一种生成p-fBm级数有限逼近的合成方法。此外,我们分析了合成的p-fBm系列,并测试了p-fBm和p-fGn的高斯性。我们测试了一阶增量(p-fGn)的平稳性,并探索了一种估计过程赫斯特参数的方法。我们的贡献与建模和分析某些纹理有关,这些纹理是某些医学和其他自然图像的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Motion Compensation for Forensic Analysis of Egocentric Video using Joint Stabilization and Tracking DC low current Hall effect measurements Examining Change Detection Methods For Hyperspectral Data Effect of Reverberation in Speech-based Emotion Recognition Traveling-Wave Ring Oscillator – Simulations and Prototype Measurements for a New Architecture for a Transmission Line Based Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1