An unsupervised segmentation framework for texture image queries

Shu‐Ching Chen, Chengcui Zhang, M. Shyu
{"title":"An unsupervised segmentation framework for texture image queries","authors":"Shu‐Ching Chen, Chengcui Zhang, M. Shyu","doi":"10.1109/CMPSAC.2001.960669","DOIUrl":null,"url":null,"abstract":"In this paper a novel unsupervised segmentation framework for texture image queries is presented. The proposed framework consists of an unsupervised segmentation method for texture images, and a multi-filter query strategy. By applying the unsupervised segmentation method on each texture image, a set of texture feature parameters for that texture image can be extracted automatically. Based upon these parameters, an effective multi-filter query strategy which allows the users to issue texture-based image queries is developed The test results of the proposed framework on 318 texture images obtained from the MIT VisTex and Brodatz database are presented to show its effectiveness.","PeriodicalId":269568,"journal":{"name":"25th Annual International Computer Software and Applications Conference. COMPSAC 2001","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"25th Annual International Computer Software and Applications Conference. COMPSAC 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2001.960669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper a novel unsupervised segmentation framework for texture image queries is presented. The proposed framework consists of an unsupervised segmentation method for texture images, and a multi-filter query strategy. By applying the unsupervised segmentation method on each texture image, a set of texture feature parameters for that texture image can be extracted automatically. Based upon these parameters, an effective multi-filter query strategy which allows the users to issue texture-based image queries is developed The test results of the proposed framework on 318 texture images obtained from the MIT VisTex and Brodatz database are presented to show its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纹理图像查询的无监督分割框架
提出了一种用于纹理图像查询的无监督分割框架。该框架包括纹理图像的无监督分割方法和多过滤器查询策略。通过对每张纹理图像应用无监督分割方法,可以自动提取该纹理图像的一组纹理特征参数。基于这些参数,开发了一种有效的多过滤器查询策略,使用户能够发出基于纹理的图像查询。本文给出了来自MIT VisTex和Brodatz数据库的318张纹理图像的测试结果,证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using SOAP to clean up configuration management An application of data warehouse technology to the measurement system for UML based artifacts InfoSleuth: agent-based system for data integration and analysis Formal and use-case driven requirement analysis in UML A long and winding road (Progress on the road to a software engineering profession)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1