Coulomb blockade in PtSi/porous Si Schottky barrier as a two-dimensional multi-tunnelling junction

A. Erfanian, H. Mehrara, F. Raissi, M. Khaje
{"title":"Coulomb blockade in PtSi/porous Si Schottky barrier as a two-dimensional multi-tunnelling junction","authors":"A. Erfanian, H. Mehrara, F. Raissi, M. Khaje","doi":"10.1049/iet-cds.2013.0475","DOIUrl":null,"url":null,"abstract":"The authors report on Coulomb blockade effect in the PtSi/porous Si Schottky barrier. A model of two-dimensional multi-tunnelling junction (2D-MTJ) can explain the blockade characteristic of this barrier. Using the SIMON simulator, the electrical characteristics of the proposed model were investigated. The results show that simulated current–voltage curves achieve a reasonable fit with the measured data and the present model can be used to study the PtSi/porous Si Schottky barrier behaviour. In accordance with both the studies, Coulomb blockade phenomenon is observed in current oscillation and single-electron effect of this device at low temperatures (5 K) is justified using the 2D-MTJ model. In addition, it indicates that by increasing the current value with temperature and for high drain voltages, PtSi/porous Si Schottky barrier behaves like a single island single-electron tunnelling (SET) junction as previously reported by Raissi et al.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2013.0475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors report on Coulomb blockade effect in the PtSi/porous Si Schottky barrier. A model of two-dimensional multi-tunnelling junction (2D-MTJ) can explain the blockade characteristic of this barrier. Using the SIMON simulator, the electrical characteristics of the proposed model were investigated. The results show that simulated current–voltage curves achieve a reasonable fit with the measured data and the present model can be used to study the PtSi/porous Si Schottky barrier behaviour. In accordance with both the studies, Coulomb blockade phenomenon is observed in current oscillation and single-electron effect of this device at low temperatures (5 K) is justified using the 2D-MTJ model. In addition, it indicates that by increasing the current value with temperature and for high drain voltages, PtSi/porous Si Schottky barrier behaves like a single island single-electron tunnelling (SET) junction as previously reported by Raissi et al.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PtSi/多孔Si肖特基势垒中的库仑阻滞作为二维多隧穿结
作者报道了PtSi/多孔Si肖特基势垒中的库仑封锁效应。二维多隧结(2D-MTJ)模型可以解释该屏障的阻断特性。利用SIMON仿真器对该模型的电特性进行了研究。结果表明,模拟的电流-电压曲线与实测数据拟合较好,该模型可用于研究PtSi/多孔Si的肖特基势垒行为。根据这两项研究,在电流振荡中观察到库仑封锁现象,并使用2D-MTJ模型证明了该器件在低温(5 K)下的单电子效应。此外,它表明,通过随温度和高漏极电压增加电流值,PtSi/多孔Si肖特基势垒的行为类似于Raissi等人先前报道的单岛单电子隧穿(SET)结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low-offset low-power and high-speed dynamic latch comparator with a preamplifier-enhanced stage Embedding delay-based physical unclonable functions in networks-on-chip Design of 10T SRAM cell with improved read performance and expanded write margin On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits Analytical model and simulation-based analysis of a work function engineered triple metal tunnel field-effect transistor device showing excellent device performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1