An efficient GPU implementation of the revised simplex method

Jakob Bieling, Patrick Peschlow, P. Martini
{"title":"An efficient GPU implementation of the revised simplex method","authors":"Jakob Bieling, Patrick Peschlow, P. Martini","doi":"10.1109/IPDPSW.2010.5470831","DOIUrl":null,"url":null,"abstract":"The computational power provided by the massive parallelism of modern graphics processing units (GPUs) has moved increasingly into focus over the past few years. In particular, general purpose computing on GPUs (GPGPU) is attracting attention among researchers and practitioners alike. Yet GPGPU research is still in its infancy, and a major challenge is to rearrange existing algorithms so as to obtain a significant performance gain from the execution on a GPU. In this paper, we address this challenge by presenting an efficient GPU implementation of a very popular algorithm for linear programming, the revised simplex method. We describe how to carry out the steps of the revised simplex method to take full advantage of the parallel processing capabilities of a GPU. Our experiments demonstrate considerable speedup over a widely used CPU implementation, thus underlining the tremendous potential of GPGPU.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2010.5470831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The computational power provided by the massive parallelism of modern graphics processing units (GPUs) has moved increasingly into focus over the past few years. In particular, general purpose computing on GPUs (GPGPU) is attracting attention among researchers and practitioners alike. Yet GPGPU research is still in its infancy, and a major challenge is to rearrange existing algorithms so as to obtain a significant performance gain from the execution on a GPU. In this paper, we address this challenge by presenting an efficient GPU implementation of a very popular algorithm for linear programming, the revised simplex method. We describe how to carry out the steps of the revised simplex method to take full advantage of the parallel processing capabilities of a GPU. Our experiments demonstrate considerable speedup over a widely used CPU implementation, thus underlining the tremendous potential of GPGPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正单纯形法的高效GPU实现
现代图形处理单元(gpu)的大规模并行性所提供的计算能力在过去几年中日益成为人们关注的焦点。特别是gpu上的通用计算(GPGPU)正在引起研究人员和实践者的关注。然而,GPGPU的研究仍处于起步阶段,一个主要的挑战是重新排列现有的算法,以便从GPU上的执行中获得显着的性能增益。在本文中,我们通过提出一种非常流行的线性规划算法的高效GPU实现来解决这一挑战,即修正单纯形法。我们描述了如何执行改进的单纯形方法的步骤,以充分利用GPU的并行处理能力。我们的实验证明了在广泛使用的CPU实现上有相当大的加速,从而强调了GPGPU的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome message Application tuning through bottleneck-driven refactoring A configurable-hardware document-similarity classifier to detect web attacks Heterogeneous parallel algorithms to solve epistatic problems Index tuning for adaptive multi-route data stream systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1