{"title":"Arabic-SOS: Segmentation, Stemming, and Orthography Standardization for Classical and pre-Modern Standard Arabic","authors":"Emad Mohamed, Z. Sayyed","doi":"10.1145/3322905.3322927","DOIUrl":null,"url":null,"abstract":"While morphological segmentation has always been a hot topic in Arabic, due to the morphological complexity of the language and the orthography, most effort has focused on Modern Standard Arabic. In this paper, we focus on pre-MSA texts. We use the Gradient Boosting algorithm to train a morphological segmenter with a corpus derived from Al-Manar, a late 19th/early 20th century magazine that focused on the Arabic and Islamic heritage. Since most of the cultural heritage Arabic available suffers from substandard orthography, we have trained a machine learner to standardize the text. Our segmentation accuracy reaches 98.47%, and the orthography standardization an F-macro of 0.98 and an F-micro of 0.99. We also produce stemming as a by-product of segmentation.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
While morphological segmentation has always been a hot topic in Arabic, due to the morphological complexity of the language and the orthography, most effort has focused on Modern Standard Arabic. In this paper, we focus on pre-MSA texts. We use the Gradient Boosting algorithm to train a morphological segmenter with a corpus derived from Al-Manar, a late 19th/early 20th century magazine that focused on the Arabic and Islamic heritage. Since most of the cultural heritage Arabic available suffers from substandard orthography, we have trained a machine learner to standardize the text. Our segmentation accuracy reaches 98.47%, and the orthography standardization an F-macro of 0.98 and an F-micro of 0.99. We also produce stemming as a by-product of segmentation.