Arabic-SOS: Segmentation, Stemming, and Orthography Standardization for Classical and pre-Modern Standard Arabic

Emad Mohamed, Z. Sayyed
{"title":"Arabic-SOS: Segmentation, Stemming, and Orthography Standardization for Classical and pre-Modern Standard Arabic","authors":"Emad Mohamed, Z. Sayyed","doi":"10.1145/3322905.3322927","DOIUrl":null,"url":null,"abstract":"While morphological segmentation has always been a hot topic in Arabic, due to the morphological complexity of the language and the orthography, most effort has focused on Modern Standard Arabic. In this paper, we focus on pre-MSA texts. We use the Gradient Boosting algorithm to train a morphological segmenter with a corpus derived from Al-Manar, a late 19th/early 20th century magazine that focused on the Arabic and Islamic heritage. Since most of the cultural heritage Arabic available suffers from substandard orthography, we have trained a machine learner to standardize the text. Our segmentation accuracy reaches 98.47%, and the orthography standardization an F-macro of 0.98 and an F-micro of 0.99. We also produce stemming as a by-product of segmentation.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While morphological segmentation has always been a hot topic in Arabic, due to the morphological complexity of the language and the orthography, most effort has focused on Modern Standard Arabic. In this paper, we focus on pre-MSA texts. We use the Gradient Boosting algorithm to train a morphological segmenter with a corpus derived from Al-Manar, a late 19th/early 20th century magazine that focused on the Arabic and Islamic heritage. Since most of the cultural heritage Arabic available suffers from substandard orthography, we have trained a machine learner to standardize the text. Our segmentation accuracy reaches 98.47%, and the orthography standardization an F-macro of 0.98 and an F-micro of 0.99. We also produce stemming as a by-product of segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯语- sos:古典和前现代标准阿拉伯语的分词、词干和正字法标准化
阿拉伯文的词形分词一直是阿拉伯文研究的热点,但由于阿拉伯文的词形和正字法的复杂性,大多数研究都集中在现代标准阿拉伯文上。在本文中,我们关注的是pre-MSA文本。我们使用梯度增强算法来训练一个形态学切分器,该切分器来源于19世纪末/ 20世纪初专注于阿拉伯和伊斯兰遗产的杂志《Al-Manar》。由于大多数阿拉伯文化遗产的正字法都不合格,我们训练了一个机器学习器来标准化文本。我们的分割准确率达到98.47%,正字法标准化F-macro为0.98,F-micro为0.99。我们也产生词干作为分割的副产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Articles in a Digitized Finnish Historical Newspaper Collection 1771-1929: Early Results Using the PIVAJ Software OCR for Greek polytonic (multi accent) historical printed documents: development, optimization and quality control Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts Validating 126 million MARC records Automatic Semantic Text Tagging on Historical Lexica by Combining OCR and Typography Classification: A Case Study on Daniel Sander's Wörterbuch der Deutschen Sprache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1