Identifying semantically meaningful sub-communities within Twitter blogosphere

Dionisios N. Sotiropoulos, Chris D. Kounavis, G. Giaglis
{"title":"Identifying semantically meaningful sub-communities within Twitter blogosphere","authors":"Dionisios N. Sotiropoulos, Chris D. Kounavis, G. Giaglis","doi":"10.1109/IISA.2013.6623727","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of semantically meaningful group detection within a sub-community of twitter micro-bloggers by utilizing a topic modeling, multi-objective clustering approach. The proposed group detection method is anchored on the Latent Dirichlet Allocation (LDA) topic modeling technique, aiming at identifying clusters of twitter users that are optimal in terms of both spatial and topical compactness. Specifically, the group detection problem is formulated as a multi-objective optimization problem taking into consideration two complementary cluster formation directives. The first objective, related to spatial compactness, is achieved by minimizing the overall deviation from the corresponding cluster centers. The second, related to topical compactness, is achieved by minimizing the portion of probability mass assigned to low probability topics for the corresponding cluster centroids. In our approach, optimization is performed by employing a multi-objective genetic algorithm, which results in a variety of cluster structures that are significantly more interpretable than cluster assignments obtained with traditional single-objective clustering algorithms.","PeriodicalId":261368,"journal":{"name":"IISA 2013","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2013.6623727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of semantically meaningful group detection within a sub-community of twitter micro-bloggers by utilizing a topic modeling, multi-objective clustering approach. The proposed group detection method is anchored on the Latent Dirichlet Allocation (LDA) topic modeling technique, aiming at identifying clusters of twitter users that are optimal in terms of both spatial and topical compactness. Specifically, the group detection problem is formulated as a multi-objective optimization problem taking into consideration two complementary cluster formation directives. The first objective, related to spatial compactness, is achieved by minimizing the overall deviation from the corresponding cluster centers. The second, related to topical compactness, is achieved by minimizing the portion of probability mass assigned to low probability topics for the corresponding cluster centroids. In our approach, optimization is performed by employing a multi-objective genetic algorithm, which results in a variety of cluster structures that are significantly more interpretable than cluster assignments obtained with traditional single-objective clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Twitter博客圈中识别语义上有意义的子社区
本文利用主题建模、多目标聚类方法,解决了twitter微博用户子社区中语义有意义的群体检测问题。本文提出的组检测方法以潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)主题建模技术为基础,旨在识别在空间和主题紧密度方面都最优的twitter用户聚类。具体而言,将群体检测问题表述为考虑两个互补的集群形成指令的多目标优化问题。第一个目标与空间紧凑性有关,通过最小化与相应集群中心的总体偏差来实现。第二,与局部紧密性相关,通过最小化分配给相应聚类质心的低概率主题的概率质量部分来实现。在我们的方法中,通过采用多目标遗传算法进行优化,从而产生各种聚类结构,这些结构比传统的单目标聚类算法获得的聚类分配具有更强的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an IoT Smart City framework Uncertainty reasoning for the Semantic Web based on Dempster-Shafer model Open data for e-government the Greek case On the creation of a Digital Cultural Heritage Map Density-based Kernel Scale estimation for Kernel clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1