Dengjie Wang, Hong Chen, Wenhuan Luan, Xin Lin, Fangxu Lv, Ziqiang Wang, Hanjun Jiang, Chun Zhang, Zhihua Wang
{"title":"A 4-40 Gb/s PAM-4 transmitter with a hybrid driver in 65 nm CMOS technology","authors":"Dengjie Wang, Hong Chen, Wenhuan Luan, Xin Lin, Fangxu Lv, Ziqiang Wang, Hanjun Jiang, Chun Zhang, Zhihua Wang","doi":"10.1109/MWSCAS.2019.8885140","DOIUrl":null,"url":null,"abstract":"This paper presents a 4-40 Gb/s PAM-4 transmitter using a novel hybrid driver. Different from conventional current-mode (CM) drivers with poor linearity and source-series terminated (SST) drivers with limited differential output swing, the proposed hybrid driver delivers a differential output swing exceeding the supply voltage with high linearity using a combination structure of the CM and SST driver. In addition, a 4-40 Gb/s quarter-rate transmitter with one-tap feedforward equalization is designed in 65nm CMOS technology using the hybrid driver, yielding a 1.8V differential peak-to-peak output swing at 1.2 V supply voltage with a 96.4% ratio of level mismatch.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a 4-40 Gb/s PAM-4 transmitter using a novel hybrid driver. Different from conventional current-mode (CM) drivers with poor linearity and source-series terminated (SST) drivers with limited differential output swing, the proposed hybrid driver delivers a differential output swing exceeding the supply voltage with high linearity using a combination structure of the CM and SST driver. In addition, a 4-40 Gb/s quarter-rate transmitter with one-tap feedforward equalization is designed in 65nm CMOS technology using the hybrid driver, yielding a 1.8V differential peak-to-peak output swing at 1.2 V supply voltage with a 96.4% ratio of level mismatch.