{"title":"Auxiliary Maximum Likelihood Estimation for Noisy Point Cloud Registration","authors":"Cole Campton, Xiaobai Sun","doi":"10.1109/HPEC.2019.8916224","DOIUrl":null,"url":null,"abstract":"We establish first a theoretical foundation for the use of Gromov-Hausdorff (GH) distance for point set registration with homeomorphic deformation maps perturbed by Gaussian noise. We then present a probabilistic, deformable registration framework. At the core of the framework is a highly efficient iterative algorithm with guaranteed convergence to a local minimum of the GH-based objective function. The framework has two other key components – a multi-scale stochastic shape descriptor and a data compression scheme. We also present an experimental comparison between our method and two existing influential methods on non-rigid motion between digital anthropomorphic phantoms extracted from physical data of multiple individuals.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We establish first a theoretical foundation for the use of Gromov-Hausdorff (GH) distance for point set registration with homeomorphic deformation maps perturbed by Gaussian noise. We then present a probabilistic, deformable registration framework. At the core of the framework is a highly efficient iterative algorithm with guaranteed convergence to a local minimum of the GH-based objective function. The framework has two other key components – a multi-scale stochastic shape descriptor and a data compression scheme. We also present an experimental comparison between our method and two existing influential methods on non-rigid motion between digital anthropomorphic phantoms extracted from physical data of multiple individuals.