Embedded system-on-chip design of atrial fibrillation classifier

Huey Woan Lim, Y. Hau, M. A. Othman, Chiao Wen Lim
{"title":"Embedded system-on-chip design of atrial fibrillation classifier","authors":"Huey Woan Lim, Y. Hau, M. A. Othman, Chiao Wen Lim","doi":"10.1109/ISOCC.2017.8368784","DOIUrl":null,"url":null,"abstract":"Atrial Fibrillation (AFIB) is one of the major risk factors of stroke and heart failure which can be observed from the electrocardiogram (ECG). This paper presents an embedded system-on-chip (SoC) architecture design of AFIB detection based on stationary wavelet transform (SWT) and artificial neural network (ANN) algorithm for heart screening propose. The architecture is designed using the hardware/software co-design technique and prototyped on Altera DE2-115 FPGA platform. Hardware acceleration of compute intensive FFT operation is also carried out to enhance computation timing performance. The whole system consumes 40,830 LEs of Altera Cyclone-IV FPGA device. The total computation time of AFIB classifier is 22 seconds for 10 seconds ECG input data with the accuracy of 95.3% which able to detect AFIB rhythm, normal sinus rhythm, and non-AFIB rhythm.","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Atrial Fibrillation (AFIB) is one of the major risk factors of stroke and heart failure which can be observed from the electrocardiogram (ECG). This paper presents an embedded system-on-chip (SoC) architecture design of AFIB detection based on stationary wavelet transform (SWT) and artificial neural network (ANN) algorithm for heart screening propose. The architecture is designed using the hardware/software co-design technique and prototyped on Altera DE2-115 FPGA platform. Hardware acceleration of compute intensive FFT operation is also carried out to enhance computation timing performance. The whole system consumes 40,830 LEs of Altera Cyclone-IV FPGA device. The total computation time of AFIB classifier is 22 seconds for 10 seconds ECG input data with the accuracy of 95.3% which able to detect AFIB rhythm, normal sinus rhythm, and non-AFIB rhythm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
房颤分类器的嵌入式片上系统设计
心房颤动(AFIB)是中风和心力衰竭的主要危险因素之一,可以从心电图(ECG)中观察到。本文提出了一种基于平稳小波变换(SWT)和人工神经网络(ANN)算法的AFIB检测的嵌入式片上系统(SoC)架构设计方案。该体系结构采用软硬件协同设计技术进行设计,并在Altera DE2-115 FPGA平台上进行原型设计。对计算密集型FFT运算进行硬件加速,提高计算时序性能。整个系统消耗Altera Cyclone-IV FPGA器件40,830 LEs。AFIB分类器对10秒心电输入数据的总计算时间为22秒,准确率为95.3%,能够检测到AFIB心律、正常窦性心律和非AFIB心律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory efficient self guided image filtering A fully-digital phase modulator with phase calibration loop for high data-rate systems Development of SoC virtual platform for IoT terminals based on OneM2M Hardware feasible offset and gain error correction for time-interleaved ADC A design of ultra-low noise LDO using noise reduction network techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1