A Graphical Insight into α Power MOSFET Model for Nanoscale CMOS Digital Technologies

Shruti Kalra
{"title":"A Graphical Insight into α Power MOSFET Model for Nanoscale CMOS Digital Technologies","authors":"Shruti Kalra","doi":"10.1109/ICSC48311.2020.9182772","DOIUrl":null,"url":null,"abstract":"It has been usually observed that conventional analytical equations utilized for building design methodologies for fundamental digital CMOS blocks are either physics or empirical based. Sakurai-Newton (SN) α-power based MOSFET model is one of the simplest empirical model that has been utilized from decades to model drain current at submicron technology node. This paper presents the pedagogical effort of the author to connect α-power based MOSFET model with Jesper-Memelink-Wallinga (JMW) representation which happens to be a popular approach for visually capturing the basic operation of long channel transistor. Connecting SN model and JMW representation enables us to visually capture the basic operation of short channel transistor also. The results obtained from the graphical representation are compared with analytical physics based MOSFET model and industry standard BSIM upto 22nm technology node.","PeriodicalId":334609,"journal":{"name":"2020 6th International Conference on Signal Processing and Communication (ICSC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Signal Processing and Communication (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC48311.2020.9182772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It has been usually observed that conventional analytical equations utilized for building design methodologies for fundamental digital CMOS blocks are either physics or empirical based. Sakurai-Newton (SN) α-power based MOSFET model is one of the simplest empirical model that has been utilized from decades to model drain current at submicron technology node. This paper presents the pedagogical effort of the author to connect α-power based MOSFET model with Jesper-Memelink-Wallinga (JMW) representation which happens to be a popular approach for visually capturing the basic operation of long channel transistor. Connecting SN model and JMW representation enables us to visually capture the basic operation of short channel transistor also. The results obtained from the graphical representation are compared with analytical physics based MOSFET model and industry standard BSIM upto 22nm technology node.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米级CMOS数字技术α功率MOSFET模型的图形化分析
通常观察到,用于构建基本数字CMOS块设计方法的传统分析方程要么是物理的,要么是基于经验的。基于Sakurai-Newton (SN) α-功率的MOSFET模型是几十年来用于模拟亚微米技术节点漏极电流的最简单的经验模型之一。本文介绍了作者将基于α-功率的MOSFET模型与jesper - memlink - wallinga (JMW)表示法连接起来的教学努力,JMW表示法恰好是直观捕捉长沟道晶体管基本工作的流行方法。将SN模型与JMW表示法相结合,还可以直观地捕捉短沟道晶体管的基本工作原理。图形化表示的结果与基于解析物理的MOSFET模型和行业标准BSIM的22nm技术节点进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Home Entry Using Raspberry Pi with Notification via Telegram Real Time Weather Prediction System Using IOT and Machine Learning Process of Detection, Determination and Correction Cycle Slip Error:A Review Equivalent Circuit Analysis of the MMR-Based UWB Microstrip Bandpass Filter SRS Automator - An Attempt to Simplify Software Development Lifecycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1