IoT Device Identification: A Machine Learning Assessment

Robert-Alexandru Craciun, Radu Nicolae Pietraru, Mihnea Alexandru Moisescu
{"title":"IoT Device Identification: A Machine Learning Assessment","authors":"Robert-Alexandru Craciun, Radu Nicolae Pietraru, Mihnea Alexandru Moisescu","doi":"10.1109/ATEE58038.2023.10108170","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) enabled applications to become an outstanding part of the everyday activities across all industries. IoT systems are prone to cybersecurity incidents due to lack of human observation on the system. Machine Learning (ML) offer robust solutions that can implement security mechanisms for IoT systems. The current paper proposes an implementation of a device identification system based on ML algorithms, a comparison between some ML algorithms and a comparison between three different hardware platforms that can be used to implement the device identification mechanism.","PeriodicalId":398894,"journal":{"name":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATEE58038.2023.10108170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) enabled applications to become an outstanding part of the everyday activities across all industries. IoT systems are prone to cybersecurity incidents due to lack of human observation on the system. Machine Learning (ML) offer robust solutions that can implement security mechanisms for IoT systems. The current paper proposes an implementation of a device identification system based on ML algorithms, a comparison between some ML algorithms and a comparison between three different hardware platforms that can be used to implement the device identification mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网设备识别:机器学习评估
物联网(IoT)使应用程序成为各行各业日常活动的重要组成部分。物联网系统由于缺乏人类对系统的观察,容易发生网络安全事件。机器学习(ML)提供了强大的解决方案,可以为物联网系统实现安全机制。本文提出了一种基于机器学习算法的设备识别系统的实现,对一些机器学习算法进行了比较,并对可用于实现设备识别机制的三种不同硬件平台进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Secure Remote Connection for the Electronics Laboratory Based on Red Pitaya Board Numerical Simulation and Experimental Validation of a Magnetic Gearbox Amplifier Analyzing the Torque Transfer between Two In-Wheel Motors of an Electric Vehicle Drop impact experiments on cylindrical pillars A Study on Cognitive and Emotional Processes Carried Out through EEG Wave Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1