Neural classification method in fault detection and diagnosis for voltage source inverter in variable speed drive with induction motor

F. Kadri, S. Drid, F. Djeffal, L. Chrifi-Alaoui
{"title":"Neural classification method in fault detection and diagnosis for voltage source inverter in variable speed drive with induction motor","authors":"F. Kadri, S. Drid, F. Djeffal, L. Chrifi-Alaoui","doi":"10.1109/EVER.2013.6521549","DOIUrl":null,"url":null,"abstract":"These days, electrical drives generally associate inverter and induction machine. Thus, these two elements must be taken into account in order to provide a relevant diagnosis of these electrical systems. The aim of this paper is to study the feasibility of fault detection and diagnosis in a three-phase inverter feeding an induction motor. The proposed approach is a neural network classification applied to the fault diagnosis of a field oriented drive of induction motor. Multilayer perception (MLP) networks are used to identify the type and location of occurring fault using the stator Concordia mean current vector. In the case of a single fault occurrence, a localization domain made with seven patterns is built. With the possibility of occurrence of two faults simultaneously, there are twenty-two different patterns. Simulated experimental results on 1.5-kW induction motor drives show the effectiveness of the proposed approach with a classification performance over than 95%.","PeriodicalId":386323,"journal":{"name":"2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2013.6521549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

These days, electrical drives generally associate inverter and induction machine. Thus, these two elements must be taken into account in order to provide a relevant diagnosis of these electrical systems. The aim of this paper is to study the feasibility of fault detection and diagnosis in a three-phase inverter feeding an induction motor. The proposed approach is a neural network classification applied to the fault diagnosis of a field oriented drive of induction motor. Multilayer perception (MLP) networks are used to identify the type and location of occurring fault using the stator Concordia mean current vector. In the case of a single fault occurrence, a localization domain made with seven patterns is built. With the possibility of occurrence of two faults simultaneously, there are twenty-two different patterns. Simulated experimental results on 1.5-kW induction motor drives show the effectiveness of the proposed approach with a classification performance over than 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经分类方法在异步电动机变频电压源逆变器故障检测与诊断中的应用
如今,电气驱动通常与逆变器和感应电机相关联。因此,为了对这些电气系统进行相关诊断,必须考虑到这两个因素。本文的目的是研究异步电动机三相逆变器故障检测与诊断的可行性。将神经网络分类方法应用于感应电机磁场定向驱动的故障诊断。采用多层感知(MLP)网络,利用定子Concordia平均电流矢量来识别发生故障的类型和位置。在单故障情况下,构建由7个模式组成的定位域。在两个断层同时发生的可能性下,有22种不同的模式。在1.5 kw感应电机驱动器上的仿真实验结果表明了该方法的有效性,分类准确率在95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ideal analytical expression of the magnetic circuit in a permanent magnet linear machine Topologies of flux-switching machines for in-wheel traction Influence of machine control strategy on electric vehicle range Design, sizing and set up of a specific low cost electronic load for PV modules characterization Regenerative braking in a small low cost plug-in hybrid electric vehicle for urban use
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1