Care Label Recognition

Jiri Kralicek, Jiri Matas, M. Busta
{"title":"Care Label Recognition","authors":"Jiri Kralicek, Jiri Matas, M. Busta","doi":"10.1109/ICDAR.2019.00158","DOIUrl":null,"url":null,"abstract":"The paper introduces the problem of care label recognition and presents a method addressing it. A care label, also called a care tag, is a small piece of cloth or paper attached to a garment providing instructions for its maintenance and information about e.g. the material and size. The informationand instructions are written as symbols or plain text. Care label recognition is a challenging text and pictogram recognition problem - the often sewn text is small, looking as if printed using a non-standard font; the contrast of the text gradually fades, making OCR progressively more difficult. On the other hand, the information provided is typically redundant and thus it facilitates semi-supervised learning. The presented care label recognition method is based on the recently published End-to-End Method for Multi-LanguageScene Text, E2E-MLT, Busta et al. 2018, exploiting specific constraints, e.g. a care label vocabulary with multi-language equivalences. Experiments conducted on a newly-created dataset of 63 care label images show that even when exploiting problem-specific constraints, a state-of-the-art scene text detection and recognition method achieve precision and recall slightly above 0.6, confirming the challenging nature of the problem.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper introduces the problem of care label recognition and presents a method addressing it. A care label, also called a care tag, is a small piece of cloth or paper attached to a garment providing instructions for its maintenance and information about e.g. the material and size. The informationand instructions are written as symbols or plain text. Care label recognition is a challenging text and pictogram recognition problem - the often sewn text is small, looking as if printed using a non-standard font; the contrast of the text gradually fades, making OCR progressively more difficult. On the other hand, the information provided is typically redundant and thus it facilitates semi-supervised learning. The presented care label recognition method is based on the recently published End-to-End Method for Multi-LanguageScene Text, E2E-MLT, Busta et al. 2018, exploiting specific constraints, e.g. a care label vocabulary with multi-language equivalences. Experiments conducted on a newly-created dataset of 63 care label images show that even when exploiting problem-specific constraints, a state-of-the-art scene text detection and recognition method achieve precision and recall slightly above 0.6, confirming the challenging nature of the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
护理标签识别
介绍了护理标签识别问题,并提出了一种解决该问题的方法。护理标签,也叫护理标签,是贴在衣服上的一小块布或纸,提供保养说明和诸如材料和尺寸等信息。信息和说明以符号或纯文本的形式书写。护理标签识别是一个具有挑战性的文本和象形文字识别问题-通常缝制的文本很小,看起来好像使用非标准字体打印;文本的对比度逐渐减弱,使OCR逐渐变得更加困难。另一方面,所提供的信息通常是冗余的,因此它有利于半监督学习。提出的护理标签识别方法基于最近发表的多语言场景文本的端到端方法,E2E-MLT, Busta等人。2018,利用特定的约束,例如具有多语言等价的护理标签词汇表。在新创建的63张护理标签图像数据集上进行的实验表明,即使在利用特定于问题的约束条件时,最先进的场景文本检测和识别方法的精度和召回率也略高于0.6,这证实了问题的挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1