Analysis of Spatio-temporal Cortical Activity with Artificial Neural Network

H. Takahashi, M. Uchihara, A. Funamizu, Rio Yokota, R. Kanzaki
{"title":"Analysis of Spatio-temporal Cortical Activity with Artificial Neural Network","authors":"H. Takahashi, M. Uchihara, A. Funamizu, Rio Yokota, R. Kanzaki","doi":"10.1109/CNE.2007.369749","DOIUrl":null,"url":null,"abstract":"The artificial neural network (ANN) can translate spatio-temporal neural activities into the corresponding test stimuli. ANN with a simple structure and generalization ability has a potential to reflect a prominent feature of the computation mechanism in the brain. In the present work, we propose a novel analysis using ANN. In the constructed ANN, neural activities in the primary auditory cortex (A1) served as the inputs, and time-series changes of test frequencies of tones served as the targets. We then investigated input-output relationships of hidden layer neurons. Consequently, we found that some hidden layer neurons tuned the frequency preference by excitatory inputs from all frequency regions, while others tuned with inhibitory inputs from a low frequency region. These results suggest that neural activities in A1 form the frequency preference with excitatory inputs from all frequency pathways and inhibitory inputs from a low frequency pathway. This suggestion is consistent with physiological facts, thus proving the feasibility of the proposed analysis.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The artificial neural network (ANN) can translate spatio-temporal neural activities into the corresponding test stimuli. ANN with a simple structure and generalization ability has a potential to reflect a prominent feature of the computation mechanism in the brain. In the present work, we propose a novel analysis using ANN. In the constructed ANN, neural activities in the primary auditory cortex (A1) served as the inputs, and time-series changes of test frequencies of tones served as the targets. We then investigated input-output relationships of hidden layer neurons. Consequently, we found that some hidden layer neurons tuned the frequency preference by excitatory inputs from all frequency regions, while others tuned with inhibitory inputs from a low frequency region. These results suggest that neural activities in A1 form the frequency preference with excitatory inputs from all frequency pathways and inhibitory inputs from a low frequency pathway. This suggestion is consistent with physiological facts, thus proving the feasibility of the proposed analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的大脑皮层时空活动分析
人工神经网络(ANN)可以将时空神经活动转化为相应的测试刺激。神经网络具有简单的结构和泛化能力,有可能反映出大脑中计算机制的一个突出特征。在目前的工作中,我们提出了一种新的使用人工神经网络的分析方法。在构建的神经网络中,初级听觉皮层(A1)的神经活动作为输入,音调测试频率的时间序列变化作为目标。然后我们研究了隐层神经元的输入-输出关系。因此,我们发现一些隐藏层神经元通过来自所有频率区域的兴奋性输入来调节频率偏好,而其他隐藏层神经元通过来自低频区域的抑制性输入来调节频率偏好。这些结果表明,A1的神经活动通过来自所有频率通路的兴奋性输入和来自低频通路的抑制性输入形成频率偏好。这一建议与生理事实相一致,从而证明了所提出分析的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1