Algorithms for direct L2 support vector machines

V. Kecman, Ljiljana Zigic
{"title":"Algorithms for direct L2 support vector machines","authors":"V. Kecman, Ljiljana Zigic","doi":"10.1109/INISTA.2014.6873654","DOIUrl":null,"url":null,"abstract":"Paper introduces a novel Direct L2 Support Vector Machine (DL2 SVM) and compares the performances of its three learning algorithms on 12 `small' and 4 `medium' real binary and multi-class datasets. The DL2 SVM model is posed as solving a NonNegative (NN) Least Squares (LS) problem. This leads to a solution in much less CPU time than what the SVMs based on quadratic programming (QP) problem need. Three techniques for solving DL2 SVM's problem are the NNLS using Cholesky decomposition with an update, NN Conjugate Gradient method and a new NN Iterative Single Data Algorithm (ISDA). All 3 methods produce both high and similar classification accuracy within the very strict nested crossvalidation (a.k.a. double resampling) experimental environment, but they do significantly differ in terms of speed. Paper presents the performances of three different algorithms in terms of accuracy, model size (percentage of support vectors obtained) and CPU time used.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Paper introduces a novel Direct L2 Support Vector Machine (DL2 SVM) and compares the performances of its three learning algorithms on 12 `small' and 4 `medium' real binary and multi-class datasets. The DL2 SVM model is posed as solving a NonNegative (NN) Least Squares (LS) problem. This leads to a solution in much less CPU time than what the SVMs based on quadratic programming (QP) problem need. Three techniques for solving DL2 SVM's problem are the NNLS using Cholesky decomposition with an update, NN Conjugate Gradient method and a new NN Iterative Single Data Algorithm (ISDA). All 3 methods produce both high and similar classification accuracy within the very strict nested crossvalidation (a.k.a. double resampling) experimental environment, but they do significantly differ in terms of speed. Paper presents the performances of three different algorithms in terms of accuracy, model size (percentage of support vectors obtained) and CPU time used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接L2支持向量机的算法
本文介绍了一种新的直接L2支持向量机(DL2 SVM),并比较了它的三种学习算法在12个“小”和4个“中”实际二值和多类数据集上的性能。DL2支持向量机模型求解非负最小二乘问题。这将导致比基于二次规划(QP)问题的svm所需的CPU时间少得多的解决方案。求解DL2支持向量机问题的三种技术分别是基于更新的Cholesky分解的NNLS、神经网络共轭梯度法和新的神经网络迭代单数据算法(ISDA)。在非常严格的嵌套交叉验证(即双重重采样)实验环境中,所有3种方法都产生了高且相似的分类精度,但它们在速度方面确实存在显着差异。本文介绍了三种不同算法在准确率、模型大小(获得的支持向量的百分比)和CPU使用时间方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1