Deep Learning based Antenna Selection and CSI Extrapolation in Massive MIMO Systems

Bo Lin, F. Gao, Shun Zhang, Ting Zhou, A. Alkhateeb
{"title":"Deep Learning based Antenna Selection and CSI Extrapolation in Massive MIMO Systems","authors":"Bo Lin, F. Gao, Shun Zhang, Ting Zhou, A. Alkhateeb","doi":"10.1109/iccc52777.2021.9580209","DOIUrl":null,"url":null,"abstract":"A critical bottleneck of massive multiple-input multiple-output (MIMO) system is the huge training overhead caused by downlink transmission, like channel estimation, downlink beamforming and covariance observation. In this paper, we propose to use the channel state information (CSI) of a small number of antennas to extrapolate the CSI of the other antennas and reduce the training overhead. Specifically, we design a deep neural network that we call an antenna domain extrapolation network (ADEN) that can exploit the correlation function among antennas. We then propose a deep learning (DL) based antenna selection network (ASN) that can select a limited antennas for optimizing the extrapolation, which is conventionally a type of combinatorial optimization and is difficult to solve. We trickly designed a constrained degradation algorithm to generate a differentiable approximation of the discrete antenna selection vector such that the back-propagation of the neural network can be guaranteed. Numerical results show that the proposed ADEN outperforms the traditional fully connected one, and the antenna selection scheme learned by ASN is much better than the trivially used uniform selection.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

A critical bottleneck of massive multiple-input multiple-output (MIMO) system is the huge training overhead caused by downlink transmission, like channel estimation, downlink beamforming and covariance observation. In this paper, we propose to use the channel state information (CSI) of a small number of antennas to extrapolate the CSI of the other antennas and reduce the training overhead. Specifically, we design a deep neural network that we call an antenna domain extrapolation network (ADEN) that can exploit the correlation function among antennas. We then propose a deep learning (DL) based antenna selection network (ASN) that can select a limited antennas for optimizing the extrapolation, which is conventionally a type of combinatorial optimization and is difficult to solve. We trickly designed a constrained degradation algorithm to generate a differentiable approximation of the discrete antenna selection vector such that the back-propagation of the neural network can be guaranteed. Numerical results show that the proposed ADEN outperforms the traditional fully connected one, and the antenna selection scheme learned by ASN is much better than the trivially used uniform selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO系统中基于深度学习的天线选择和CSI外推
大规模多输入多输出(MIMO)系统的一个关键瓶颈是下行传输带来的巨大训练开销,如信道估计、下行波束形成和协方差观测。在本文中,我们提出使用少数天线的信道状态信息(CSI)来推断其他天线的CSI,以减少训练开销。具体来说,我们设计了一个深度神经网络,我们称之为天线域外推网络(ADEN),它可以利用天线之间的相关函数。然后,我们提出了一种基于深度学习(DL)的天线选择网络(ASN),该网络可以选择有限的天线来优化外推,这通常是一种难以解决的组合优化。我们巧妙地设计了一种约束退化算法来生成离散天线选择向量的可微逼近,从而保证神经网络的反向传播。数值结果表明,该方法优于传统的全连接ADEN,并且ASN学习的天线选择方案比常用的均匀选择方案要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1