Using Simulation to Estimate Reliability for Transmuted Inverse Exponential Distribution

Makki A. Mohammed Salih, Jaafer Hmood Eidi
{"title":"Using Simulation to Estimate Reliability for Transmuted Inverse Exponential Distribution","authors":"Makki A. Mohammed Salih, Jaafer Hmood Eidi","doi":"10.1109/CAS47993.2019.9075709","DOIUrl":null,"url":null,"abstract":"In this paper, we estimated scale parameter and reliability function for Transmuted Inverse Exponential Distribution (TIE) by five estimation methods Median (MED), Modified Moment (MM), Percentile (PER), Regression (REG) and Maximum Likelihood (MLE) methods. Simulation experiments were used to generate random variables by six experiments $(E_{1},\\ E_{2},\\ \\ldots,\\ E_{6})$ and five times for reliability $(t)$ which is explain it in the simulation results section. Finally, Comparisons were made between the obtained results by using Mean Square Error (MSE); the results have been put in tables for comparison purpose. The results indicate that (MLE) estimator for an estimate the scale parameter and reliability function is the best concerning all estimators in four experiments, and (REG) estimator is the best in two experiments.","PeriodicalId":202291,"journal":{"name":"2019 First International Conference of Computer and Applied Sciences (CAS)","volume":"666 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Computer and Applied Sciences (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAS47993.2019.9075709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we estimated scale parameter and reliability function for Transmuted Inverse Exponential Distribution (TIE) by five estimation methods Median (MED), Modified Moment (MM), Percentile (PER), Regression (REG) and Maximum Likelihood (MLE) methods. Simulation experiments were used to generate random variables by six experiments $(E_{1},\ E_{2},\ \ldots,\ E_{6})$ and five times for reliability $(t)$ which is explain it in the simulation results section. Finally, Comparisons were made between the obtained results by using Mean Square Error (MSE); the results have been put in tables for comparison purpose. The results indicate that (MLE) estimator for an estimate the scale parameter and reliability function is the best concerning all estimators in four experiments, and (REG) estimator is the best in two experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用仿真方法估计变换逆指数分布的可靠性
本文采用中位数法(MED)、修正矩法(MM)、百分位数法(PER)、回归法(REG)和最大似然法(MLE)五种估计方法估计了转化逆指数分布(TIE)的尺度参数和可靠性函数。仿真实验通过6次实验$(E_{1},\ E_{2},\ \ldots,\ E_{6})$和5次实验$(t)$生成随机变量,在仿真结果部分解释。最后,利用均方误差(MSE)对所得结果进行比较;结果已列在表格中以便比较。结果表明,在4个实验中,(MLE)估计量对尺度参数和信度函数的估计是最好的,(REG)估计量在2个实验中是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Cancer Detection Based on ABCD Rule Three Prior and Double Prior Selection to Comparison Estimate Parameter Rayleigh Distribution under Data Type II Censoring Speaker identification using convolutional neural network for clean and noisy speech samples Surface Patch Detection of 3D Point Cloud Using Local Shape Descriptor The trade-off between security and quality using permutation and substitution techniques in speech scrambling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1