Modelling Non Gaussianity of Oil Price Returns

I. Mauleón
{"title":"Modelling Non Gaussianity of Oil Price Returns","authors":"I. Mauleón","doi":"10.2139/ssrn.2295582","DOIUrl":null,"url":null,"abstract":"Non Gaussian densities suitable for multivariate generalizations are fitted to daily oil price returns. The absolute and comparative goodness of fit of the several estimated models, is assessed with descriptive and formal methods. A new statistical density forecast test is introduced for that purpose. Extensive descriptive and statistical analysis of the estimated models show that an asymmetric Student' t, with the EGARCH conditional variance model yields a remarkable good fit. The parameters of this density are also stable over several subsamples, while the remaining model parameters are not.","PeriodicalId":340493,"journal":{"name":"Pollution eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollution eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2295582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non Gaussian densities suitable for multivariate generalizations are fitted to daily oil price returns. The absolute and comparative goodness of fit of the several estimated models, is assessed with descriptive and formal methods. A new statistical density forecast test is introduced for that purpose. Extensive descriptive and statistical analysis of the estimated models show that an asymmetric Student' t, with the EGARCH conditional variance model yields a remarkable good fit. The parameters of this density are also stable over several subsamples, while the remaining model parameters are not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石油价格收益的非高斯性建模
适合多元推广的非高斯密度拟合每日石油价格回报。用描述性和形式化方法对几种估计模型的绝对拟合优度和比较拟合优度进行了评估。为此,介绍了一种新的统计密度预测试验。对估计模型进行广泛的描述和统计分析表明,不对称的Student' t与EGARCH条件方差模型具有显著的良好拟合。该密度的参数在几个子样本上也是稳定的,而其余的模型参数则不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Principles of International Law and the Adoption of a Market-Based Mechanism for Greenhouse Gas Emissions from Shipping Neutralization of Carbon Monoxide by Magnetite-Based Catalysts Carbon Sequestration Carbon Sequestration and N- and M-Shaped Environmental Kuznets Curves: Evidence from International Land Use Change Fuel Oil from Plastic Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1