Generating Topological Structure of Floorplans from Room Attributes

Yu Yin, Will Hutchcroft, Naji Khosravan, Ivaylo Boyadzhiev, Y. Fu, S. B. Kang
{"title":"Generating Topological Structure of Floorplans from Room Attributes","authors":"Yu Yin, Will Hutchcroft, Naji Khosravan, Ivaylo Boyadzhiev, Y. Fu, S. B. Kang","doi":"10.1145/3512527.3531384","DOIUrl":null,"url":null,"abstract":"Analysis of indoor spaces requires topological information. In this paper, we propose to extract topological information from room attributes using what we call Iterative and adaptive graph Topology Learning (ITL). ITL progressively predicts multiple relations between rooms; at each iteration, it improves node embeddings, which in turn facilitates the generation of a better topological graph structure. This notion of iterative improvement of node embeddings and topological graph structure is in the same spirit as [5]. However, while [5] computes the adjacency matrix based on node similarity, we learn the graph metric using a relational decoder to extract room correlations. Experiments using a new challenging indoor dataset validate our proposed method. Qualitative and quantitative evaluation for layout topology prediction and floorplan generation applications also demonstrate the effectiveness of ITL.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"124 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Analysis of indoor spaces requires topological information. In this paper, we propose to extract topological information from room attributes using what we call Iterative and adaptive graph Topology Learning (ITL). ITL progressively predicts multiple relations between rooms; at each iteration, it improves node embeddings, which in turn facilitates the generation of a better topological graph structure. This notion of iterative improvement of node embeddings and topological graph structure is in the same spirit as [5]. However, while [5] computes the adjacency matrix based on node similarity, we learn the graph metric using a relational decoder to extract room correlations. Experiments using a new challenging indoor dataset validate our proposed method. Qualitative and quantitative evaluation for layout topology prediction and floorplan generation applications also demonstrate the effectiveness of ITL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从房间属性生成平面图的拓扑结构
室内空间分析需要拓扑信息。在本文中,我们建议使用我们所谓的迭代和自适应图拓扑学习(ITL)从房间属性中提取拓扑信息。ITL逐步预测房间之间的多重关系;在每次迭代中,它改进了节点嵌入,这反过来又有利于生成更好的拓扑图结构。这种迭代改进节点嵌入和拓扑图结构的概念与[5]的精神相同。然而,当[5]基于节点相似度计算邻接矩阵时,我们使用关系解码器来提取房间相关性来学习图度量。使用新的具有挑战性的室内数据集进行的实验验证了我们提出的方法。对布局拓扑预测和平面图生成的定性和定量评价也证明了ITL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1