A Data-Driven Control Strategy for Trip Length-Conscious Power Management of Plug-In Hybrid Electric Vehicles

Jafar Abbaszadeh Chekan, Saeid Bashash, S. Taheri
{"title":"A Data-Driven Control Strategy for Trip Length-Conscious Power Management of Plug-In Hybrid Electric Vehicles","authors":"Jafar Abbaszadeh Chekan, Saeid Bashash, S. Taheri","doi":"10.1109/CCTA.2018.8511466","DOIUrl":null,"url":null,"abstract":"This paper presents a novel data-driven control strategy for the computationally efficient power management of plug-in hybrid electric vehicles (PHEVs). The proposed method relies on a set of real-time control policies trained through a linear regression process based on a large set of optimal powertrain decisions obtained from dynamic programming. The control policies receive the real-time powertrain system information such as the demanded propulsion force, vehicle speed, battery state-of-charge, etc. to compute the required torque values for the engine and the electric drivetrain system. The proposed controller makes near-optimal decisions when it is evaluated for the same test conditions as trained. When the test and training settings are different, however, the controller decisions deviate from optimality. We show that this deviation can be mitigated by including future drive cycle information such as trip length in the control computations.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel data-driven control strategy for the computationally efficient power management of plug-in hybrid electric vehicles (PHEVs). The proposed method relies on a set of real-time control policies trained through a linear regression process based on a large set of optimal powertrain decisions obtained from dynamic programming. The control policies receive the real-time powertrain system information such as the demanded propulsion force, vehicle speed, battery state-of-charge, etc. to compute the required torque values for the engine and the electric drivetrain system. The proposed controller makes near-optimal decisions when it is evaluated for the same test conditions as trained. When the test and training settings are different, however, the controller decisions deviate from optimality. We show that this deviation can be mitigated by including future drive cycle information such as trip length in the control computations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插电式混合动力汽车行程意识电源管理的数据驱动控制策略
针对插电式混合动力汽车(phev)的高效电源管理问题,提出了一种数据驱动控制策略。该方法基于基于动态规划的大量最优动力系统决策集,通过线性回归过程训练出的一组实时控制策略。控制策略接收动力系统的实时信息,如所需的推进力、车速、电池充电状态等,以计算发动机和电动传动系统所需的扭矩值。所提出的控制器在与训练的相同测试条件下进行评估时,可以做出接近最优的决策。然而,当测试和训练设置不同时,控制器的决策偏离了最优性。我们表明,这种偏差可以通过在控制计算中包括未来的驱动周期信息(如行程长度)来减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1