The Role of Context for Object Detection and Semantic Segmentation in the Wild

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, S. Fidler, R. Urtasun, A. Yuille
{"title":"The Role of Context for Object Detection and Semantic Segmentation in the Wild","authors":"Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, S. Fidler, R. Urtasun, A. Yuille","doi":"10.1109/CVPR.2014.119","DOIUrl":null,"url":null,"abstract":"In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and object detection. Our analysis shows that nearest neighbor based approaches perform poorly on semantic segmentation of contextual classes, showing the variability of PASCAL imagery. Furthermore, improvements of existing contextual models for detection is rather modest. In order to push forward the performance in this difficult scenario, we propose a novel deformable part-based model, which exploits both local context around each candidate detection as well as global context at the level of the scene. We show that this contextual reasoning significantly helps in detecting objects at all scales.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1203","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1203

Abstract

In this paper we study the role of context in existing state-of-the-art detection and segmentation approaches. Towards this goal, we label every pixel of PASCAL VOC 2010 detection challenge with a semantic category. We believe this data will provide plenty of challenges to the community, as it contains 520 additional classes for semantic segmentation and object detection. Our analysis shows that nearest neighbor based approaches perform poorly on semantic segmentation of contextual classes, showing the variability of PASCAL imagery. Furthermore, improvements of existing contextual models for detection is rather modest. In order to push forward the performance in this difficult scenario, we propose a novel deformable part-based model, which exploits both local context around each candidate detection as well as global context at the level of the scene. We show that this contextual reasoning significantly helps in detecting objects at all scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上下文在野外目标检测和语义分割中的作用
在本文中,我们研究了上下文在现有的最先进的检测和分割方法中的作用。为了实现这一目标,我们用语义类别标记了PASCAL VOC 2010检测挑战的每个像素。我们相信这些数据会给社区带来很多挑战,因为它包含520个额外的类,用于语义分割和对象检测。我们的分析表明,基于最近邻的方法在上下文类的语义分割上表现不佳,显示了PASCAL图像的可变性。此外,现有的上下文检测模型的改进是相当有限的。为了提高在这种困难场景下的性能,我们提出了一种新的基于可变形部件的模型,该模型既利用了每个候选检测周围的局部上下文,也利用了场景级别的全局上下文。我们表明,这种上下文推理显著有助于在所有尺度上检测物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1