O(n) depth-2 binary addition with feedforward neural nets

S. Vassiliadis, K. Bertels, G. Pechanek
{"title":"O(n) depth-2 binary addition with feedforward neural nets","authors":"S. Vassiliadis, K. Bertels, G. Pechanek","doi":"10.1109/ICNN.1994.374487","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the reduction of the size of depth-2 feedforward neural networks performing binary addition and related functions. We suggest that 2-1 binary n-bit addition and some related functions can be computed in a depth-2 network of size O(n) with maximum fan-in of 2n+1. Furthermore, we show, if both input polarities are available, that the comparison can be computed in a depth-1 network of size O(1) also with maximum fan-in of 2n+1.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we investigate the reduction of the size of depth-2 feedforward neural networks performing binary addition and related functions. We suggest that 2-1 binary n-bit addition and some related functions can be computed in a depth-2 network of size O(n) with maximum fan-in of 2n+1. Furthermore, we show, if both input polarities are available, that the comparison can be computed in a depth-1 network of size O(1) also with maximum fan-in of 2n+1.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
O(n)深度-2的前馈神经网络二进制加法
本文研究了深度-2前馈神经网络的二进制加法和相关函数的缩减问题。我们建议2-1二进制n位加法和一些相关函数可以在深度为2的网络中计算,网络大小为O(n),最大扇入为2n+1。此外,我们表明,如果两个输入极性都可用,则可以在大小为O(1)的深度1网络中计算比较,并且最大扇入为2n+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1