Discovering Attribute-Specific Features From Online Reviews: What Is the Gap Between Automated Tools and Human Cognition?

X. Jing, Penghao Wang, Julia M. Rayz
{"title":"Discovering Attribute-Specific Features From Online Reviews: What Is the Gap Between Automated Tools and Human Cognition?","authors":"X. Jing, Penghao Wang, Julia M. Rayz","doi":"10.4018/IJSSCI.2018040101","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking. Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews.However, oftentimes,theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct.Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions.Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering.Twoexperiments aredescribed in thispaper: thefirst focuseson testing theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition.Anewmetriccalledthe“splitvalue”thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm.Theauthors’ experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand sentiments,couldbeextractedfromthereviews. KeyWORDS Artificial Intelligence, Clustering, Cognition, Feature Extraction, Opinion Mining, Text Understand, Word2Vec","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"35 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking. Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews.However, oftentimes,theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct.Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions.Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering.Twoexperiments aredescribed in thispaper: thefirst focuseson testing theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition.Anewmetriccalledthe“splitvalue”thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm.Theauthors’ experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand sentiments,couldbeextractedfromthereviews. KeyWORDS Artificial Intelligence, Clustering, Cognition, Feature Extraction, Opinion Mining, Text Understand, Word2Vec
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从在线评论中发现属性特定的特征:自动化工具和人类认知之间的差距是什么?
Thisarticledescribeshowonlinereviewsplayanimportantroleindatadrivendecisionmaking。Manyeffortshavebeeninvestedindeterminingtheoverallsentimentcarriedbythereviews。However,通常是theoverallratingsofthereviewsdonotrepresentopinionstowardspecificattributes ofaproduct。Anidealopinionminingtoolshouldaimatfindingboththeproductattributesand theircorrespondingopinions。Theauthorsproposeanapproachforextractingtheattributespecific featuresfromonlinereviewsusingaWord2Vecmodelcombinedwithclustering。Twoexperiments aredescribed in> thispaper: > thefirst focuseson testing> theperformanceof theWord2Vecmodel onextractingproductaspectwords,thesecondaddresseshowwelltheextractedfeaturesobtained arerecognizablebyhumancognition。Anewmetriccalledthe " splitvalue " thatisbasedoncluster similarityanddiversityisintroducedtoexaminetheconsistencyofclusteringalgorithm。Theauthors ' ' experimentssuggestthatmeaningfulclusters,whichprovideinsightstotheproductattributesand情绪,couldbeextractedfromthereviews。关键词:人工智能,聚类,认知,特征提取,意见挖掘,文本理解,Word2Vec
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Discovery of Hospital Medical Technology Based on Partial Ordered Structure Diagrams Artificial Intelligence Techniques to improve cognitive traits of Down Syndrome Individuals: An Analysis TA-WHI: Text Analysis of Web-Based Health Information Detection of Distributed Denial of Service (DDoS) Attacks Using Computational Intelligence and Majority Vote-Based Ensemble Approach Model-Based Method for Optimisation of an Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1