{"title":"MEMS Inertial Switch for Power Management of Environmental Vibration Monitoring","authors":"J. Fu, Dongling Li, Guoyin Wang, Di Wu","doi":"10.1109/ICDMA.2013.185","DOIUrl":null,"url":null,"abstract":"Power management technology is a fundamental issue in environmental vibration monitoring. In this paper, we propose a power management scheme using a MEMS inertial switch to minimize power consumption and maximize lifetime of environmental vibration monitoring system. The MEMS inertial switch integrates detecting and controlling systems with no power consumption. A prototype with unidirectional sensitivity is designed and fabricated based on bulk micromachining technology. The switch die (5.8×5.8×0.55mm3) is packaged and tested. As an 80g half-sine-wave acceleration was applied, the response time and contact time are about 0.37ms and 49ms, respectively. The contact resistance is no more than 6& Omega;. These indicate the switch has the advantages of miniature, high sensitivity and good contact effect which are suitable for the applications in power management of environmental vibration monitoring.","PeriodicalId":403312,"journal":{"name":"2013 Fourth International Conference on Digital Manufacturing & Automation","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Digital Manufacturing & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMA.2013.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Power management technology is a fundamental issue in environmental vibration monitoring. In this paper, we propose a power management scheme using a MEMS inertial switch to minimize power consumption and maximize lifetime of environmental vibration monitoring system. The MEMS inertial switch integrates detecting and controlling systems with no power consumption. A prototype with unidirectional sensitivity is designed and fabricated based on bulk micromachining technology. The switch die (5.8×5.8×0.55mm3) is packaged and tested. As an 80g half-sine-wave acceleration was applied, the response time and contact time are about 0.37ms and 49ms, respectively. The contact resistance is no more than 6& Omega;. These indicate the switch has the advantages of miniature, high sensitivity and good contact effect which are suitable for the applications in power management of environmental vibration monitoring.