Classification of breast-tissue microarray spots using colour and local invariants

Telmo Amaral, S. McKenna, K. Robertson, A. Thompson
{"title":"Classification of breast-tissue microarray spots using colour and local invariants","authors":"Telmo Amaral, S. McKenna, K. Robertson, A. Thompson","doi":"10.1109/ISBI.2008.4541167","DOIUrl":null,"url":null,"abstract":"Breast tissue microarrays facilitate the survey of very large numbers of tumours but their scoring by pathologists is time consuming, typically highly quantised and not without error. Automated segmentation of cells and intra-cellular compartments in such data can be problematic for reasons that include cell overlapping, complex tissue structure, debris, and variable appearance. This paper proposes a computationally efficient approach that uses colour and differential invariants to assign class posterior probabilities to pixels and then performs probabilistic classification of TMA spots using features analogous to the Quickscore system currently used by pathologists. It does not rely on accurate segmentation of individual cells. Classification performance at both pixel and spot levels was assessed using 110 spots from the adjuvant breast cancer (ABC) chemotherapy trial. The use of differential invariants in addition to colour yielded a small improvement in accuracy. Some reasons for classification results in disagreement with pathologist-provided labels are discussed and include noise in the class labels.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Breast tissue microarrays facilitate the survey of very large numbers of tumours but their scoring by pathologists is time consuming, typically highly quantised and not without error. Automated segmentation of cells and intra-cellular compartments in such data can be problematic for reasons that include cell overlapping, complex tissue structure, debris, and variable appearance. This paper proposes a computationally efficient approach that uses colour and differential invariants to assign class posterior probabilities to pixels and then performs probabilistic classification of TMA spots using features analogous to the Quickscore system currently used by pathologists. It does not rely on accurate segmentation of individual cells. Classification performance at both pixel and spot levels was assessed using 110 spots from the adjuvant breast cancer (ABC) chemotherapy trial. The use of differential invariants in addition to colour yielded a small improvement in accuracy. Some reasons for classification results in disagreement with pathologist-provided labels are discussed and include noise in the class labels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用颜色和局部不变量对乳腺组织微阵列斑点进行分类
乳腺组织微阵列有助于对大量肿瘤的调查,但病理学家对其进行评分是耗时的,通常是高度量化的,而且并非没有错误。由于细胞重叠、复杂的组织结构、碎片和变化的外观等原因,这种数据中的细胞和细胞内区室的自动分割可能存在问题。本文提出了一种计算效率高的方法,该方法使用颜色和微分不变量将类后验概率分配给像素,然后使用类似于病理学家目前使用的Quickscore系统的特征对TMA点进行概率分类。它不依赖于单个细胞的精确分割。使用辅助乳腺癌(ABC)化疗试验中的110个点来评估像素和点水平的分类性能。除了使用颜色外,还使用微分不变量,准确度有了小小的提高。本文讨论了与病理学家提供的标签不一致的分类结果的一些原因,包括分类标签中的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1