Natural Language Processing Applied on Large Scale Data Extraction from Scientific Papers in Fuel Cells

Feifan Yang
{"title":"Natural Language Processing Applied on Large Scale Data Extraction from Scientific Papers in Fuel Cells","authors":"Feifan Yang","doi":"10.1145/3508230.3508256","DOIUrl":null,"url":null,"abstract":"Natural language processing (NLP) has a great potential to help scientists automatically extract information from large-scale text datasets. In this paper, we focus on the process of NLP — including text acquisition, text preprocessing, word embedding training, and named entity recognition — applied on 106,181 abstracts of fuel cell papers. Then we evaluate our trained model on its ability of analogy, use the model to analyze the research trend in fuel cell materials and predict new materials. To the best of our knowledge, it is the first time that NLP has been applied in the field of fuel cells. This data-driven technique is demonstrated to have the potential to promote the discoveries of new fuel cell materials.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural language processing (NLP) has a great potential to help scientists automatically extract information from large-scale text datasets. In this paper, we focus on the process of NLP — including text acquisition, text preprocessing, word embedding training, and named entity recognition — applied on 106,181 abstracts of fuel cell papers. Then we evaluate our trained model on its ability of analogy, use the model to analyze the research trend in fuel cell materials and predict new materials. To the best of our knowledge, it is the first time that NLP has been applied in the field of fuel cells. This data-driven technique is demonstrated to have the potential to promote the discoveries of new fuel cell materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然语言处理在燃料电池科学论文大规模数据提取中的应用
自然语言处理(NLP)在帮助科学家从大规模文本数据集中自动提取信息方面具有巨大的潜力。在本文中,我们重点研究了自然语言处理的过程,包括文本获取、文本预处理、词嵌入训练和命名实体识别,并将其应用于106,181篇燃料电池论文摘要。然后对模型的类比能力进行评价,并用该模型分析燃料电池材料的研究趋势和预测新材料。据我们所知,这是NLP首次应用于燃料电池领域。这种数据驱动的技术被证明具有促进新燃料电池材料发现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pandemic rumor identification on social networking sites: A case study of COVID-19 Research on Domain Emotion Dictionary Construction Method based on Improved SO-PMI Algorithm Topic Segmentation for Interview Dialogue System Method of Graphical User Interface Adaptation Using Reinforcement Learning and Automated Testing Prediction of Number of Likes and Retweets based on the Features of Tweet Text and Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1