Parameter estimation in Bayesian Blind Deconvolution with super Gaussian image priors

M. Vega, R. Molina, A. Katsaggelos
{"title":"Parameter estimation in Bayesian Blind Deconvolution with super Gaussian image priors","authors":"M. Vega, R. Molina, A. Katsaggelos","doi":"10.5281/ZENODO.43886","DOIUrl":null,"url":null,"abstract":"Super Gaussian (SG) distributions have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution (BD) problems. Their conjugate based representations make them specially attractive when Variational Bayes (VB) inference is used since their variational parameters can be calculated in closed form with the sole knowledge of the energy function of the prior model. In this work we show how the introduction in the SG distribution of a global strength (not necessary scale) parameter can be used to improve the quality of the obtained restorations as well as to introduce additional information on the global weight of the prior. A model to estimate the new unknown parameter within the Bayesian framework is provided. Experimental results, on both synthetic and real images, demonstrate the effectiveness of the proposed approach.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Super Gaussian (SG) distributions have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution (BD) problems. Their conjugate based representations make them specially attractive when Variational Bayes (VB) inference is used since their variational parameters can be calculated in closed form with the sole knowledge of the energy function of the prior model. In this work we show how the introduction in the SG distribution of a global strength (not necessary scale) parameter can be used to improve the quality of the obtained restorations as well as to introduce additional information on the global weight of the prior. A model to estimate the new unknown parameter within the Bayesian framework is provided. Experimental results, on both synthetic and real images, demonstrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高斯图像先验贝叶斯盲反卷积参数估计
在贝叶斯盲反卷积(BD)问题中,超高斯(SG)分布已被证明是非常强大的先验模型。当使用变分贝叶斯(VB)推理时,它们的共轭表示使它们特别有吸引力,因为它们的变分参数可以用先验模型的能量函数的唯一知识以封闭形式计算。在这项工作中,我们展示了如何在SG分布中引入全局强度(非必要尺度)参数来提高获得的恢复质量,以及引入关于先验全局权重的附加信息。给出了一个在贝叶斯框架下估计新的未知参数的模型。在合成图像和真实图像上的实验结果都证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1