Biclustering multivariate data for correlated subspace mining

Kazuho Watanabe, Hsiang-Yun Wu, Yusuke Niibe, Shigeo Takahashi, I. Fujishiro
{"title":"Biclustering multivariate data for correlated subspace mining","authors":"Kazuho Watanabe, Hsiang-Yun Wu, Yusuke Niibe, Shigeo Takahashi, I. Fujishiro","doi":"10.1109/PACIFICVIS.2015.7156389","DOIUrl":null,"url":null,"abstract":"Exploring feature subspaces is one of promising approaches to analyzing and understanding the important patterns in multivariate data. If relying too much on effective enhancements in manual interventions, the associated results depend heavily on the knowledge and skills of users performing the data analysis. This paper presents a novel approach to extracting feature subspaces from multivariate data by incorporating biclustering techniques. The approach has been maximally automated in the sense that highly-correlated dimensions are automatically grouped to form subspaces, which effectively supports further exploration of them. A key idea behind our approach lies in a new mathematical formulation of asymmetric biclustering, by combining spherical k-means clustering for grouping highly-correlated dimensions, together with ordinary k-means clustering for identifying subsets of data samples. Lower-dimensional representations of data in feature subspaces are successfully visualized by parallel coordinate plot, where we project the data samples of correlated dimensions to one composite axis through dimensionality reduction schemes. Several experimental results of our data analysis together with discussions will be provided to assess the capability of our approach.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Exploring feature subspaces is one of promising approaches to analyzing and understanding the important patterns in multivariate data. If relying too much on effective enhancements in manual interventions, the associated results depend heavily on the knowledge and skills of users performing the data analysis. This paper presents a novel approach to extracting feature subspaces from multivariate data by incorporating biclustering techniques. The approach has been maximally automated in the sense that highly-correlated dimensions are automatically grouped to form subspaces, which effectively supports further exploration of them. A key idea behind our approach lies in a new mathematical formulation of asymmetric biclustering, by combining spherical k-means clustering for grouping highly-correlated dimensions, together with ordinary k-means clustering for identifying subsets of data samples. Lower-dimensional representations of data in feature subspaces are successfully visualized by parallel coordinate plot, where we project the data samples of correlated dimensions to one composite axis through dimensionality reduction schemes. Several experimental results of our data analysis together with discussions will be provided to assess the capability of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量数据的双聚类相关子空间挖掘
探索特征子空间是分析和理解多变量数据中重要模式的一种很有前途的方法。如果过度依赖于手动干预的有效增强,则相关结果在很大程度上取决于执行数据分析的用户的知识和技能。本文提出了一种结合双聚类技术从多元数据中提取特征子空间的新方法。在高度相关的维度被自动分组形成子空间的意义上,该方法已经最大程度地自动化了,这有效地支持了对它们的进一步探索。我们的方法背后的一个关键思想在于一个新的非对称双聚类的数学公式,通过结合球形k-means聚类来分组高度相关的维度,以及普通k-means聚类来识别数据样本的子集。利用平行坐标图成功地可视化了特征子空间中数据的低维表示,通过降维方案将相关维的数据样本投影到一个复合轴上。将提供我们的数据分析的几个实验结果以及讨论,以评估我们的方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter-aware label layout MetaTracts - A method for robust extraction and visualization of carbon fiber bundles in fiber reinforced composites Variational circular treemaps for interactive visualization of hierarchical data Advanced lighting for unstructured-grid data visualization Laplacian-based dynamic graph visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1