AVEC 2016: Depression, Mood, and Emotion Recognition Workshop and Challenge

M. Valstar, J. Gratch, Björn Schuller, F. Ringeval, D. Lalanne, M. Torres, Stefan Scherer, Giota Stratou, R. Cowie, M. Pantic
{"title":"AVEC 2016: Depression, Mood, and Emotion Recognition Workshop and Challenge","authors":"M. Valstar, J. Gratch, Björn Schuller, F. Ringeval, D. Lalanne, M. Torres, Stefan Scherer, Giota Stratou, R. Cowie, M. Pantic","doi":"10.1145/2988257.2988258","DOIUrl":null,"url":null,"abstract":"The Audio/Visual Emotion Challenge and Workshop (AVEC 2016) \"Depression, Mood and Emotion\" will be the sixth competition event aimed at comparison of multimedia processing and machine learning methods for automatic audio, visual and physiological depression and emotion analysis, with all participants competing under strictly the same conditions. The goal of the Challenge is to provide a common benchmark test set for multi-modal information processing and to bring together the depression and emotion recognition communities, as well as the audio, video and physiological processing communities, to compare the relative merits of the various approaches to depression and emotion recognition under well-defined and strictly comparable conditions and establish to what extent fusion of the approaches is possible and beneficial. This paper presents the challenge guidelines, the common data used, and the performance of the baseline system on the two tasks.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"522","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 522

Abstract

The Audio/Visual Emotion Challenge and Workshop (AVEC 2016) "Depression, Mood and Emotion" will be the sixth competition event aimed at comparison of multimedia processing and machine learning methods for automatic audio, visual and physiological depression and emotion analysis, with all participants competing under strictly the same conditions. The goal of the Challenge is to provide a common benchmark test set for multi-modal information processing and to bring together the depression and emotion recognition communities, as well as the audio, video and physiological processing communities, to compare the relative merits of the various approaches to depression and emotion recognition under well-defined and strictly comparable conditions and establish to what extent fusion of the approaches is possible and beneficial. This paper presents the challenge guidelines, the common data used, and the performance of the baseline system on the two tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AVEC 2016:抑郁,情绪和情绪识别研讨会和挑战
视听情感挑战及工作坊(AVEC 2016)“抑郁,情绪和情绪”将是第六次比赛,旨在比较多媒体处理和机器学习方法,用于自动音频,视觉和生理抑郁和情绪分析,所有参与者在严格相同的条件下比赛。挑战赛的目标是为多模态信息处理提供一个通用的基准测试集,并将抑郁症和情绪识别社区以及音频,视频和生理处理社区聚集在一起,在定义明确且严格可比的条件下,比较各种方法在抑郁症和情绪识别方面的相对优点,并确定方法融合的可能性和有益程度。本文介绍了挑战指南、使用的常用数据以及基线系统在这两个任务上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Depression using Vocal, Facial and Semantic Communication Cues Multimodal Emotion Recognition for AVEC 2016 Challenge Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016 Session details: Depression recognition Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1