{"title":"Exploitation of Digestate in a Fully Integrated Biowaste Treatment Facility: A Case Study","authors":"M. Mastellone","doi":"10.5772/intechopen.92223","DOIUrl":null,"url":null,"abstract":"The increase of biowaste generation has reached critical levels in many countries. The European legislation introduced the biowaste treatment and the organic recycling as central theme of its political agenda with the aim to promote the sustainable exploitation of this peculiar waste. The most utilized technologies applied to the biowaste treatment are based on the biological processes targeting to produce biogas or, more recently, biomethane to be used as fuel. The production of biomethane allows to produce a substitute of the fossil methane with a yield of about 0.07gCH4/gbiowaste; the remaining fractions are waste coming from the pretreatment/refining steps, solid digestate or stabilized compost, and leachate. The sustainable treatment of these fractions is a mandatory issue to treat the biowaste in a reliable and sustainable integrated process since their amount is more than 85% and the impact of their treatment on environment and economy of the overall treatment process can be quite relevant. This chapter focused on the so-called smart facility that integrates processes based on thermochemical processes with the biological one targeting to increase the overall sustainability, the flexibility regarding the input biowaste composition, and the independency by the external factors affecting the waste trading.","PeriodicalId":303099,"journal":{"name":"Biogas - Recent Advances and Integrated Approaches","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogas - Recent Advances and Integrated Approaches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The increase of biowaste generation has reached critical levels in many countries. The European legislation introduced the biowaste treatment and the organic recycling as central theme of its political agenda with the aim to promote the sustainable exploitation of this peculiar waste. The most utilized technologies applied to the biowaste treatment are based on the biological processes targeting to produce biogas or, more recently, biomethane to be used as fuel. The production of biomethane allows to produce a substitute of the fossil methane with a yield of about 0.07gCH4/gbiowaste; the remaining fractions are waste coming from the pretreatment/refining steps, solid digestate or stabilized compost, and leachate. The sustainable treatment of these fractions is a mandatory issue to treat the biowaste in a reliable and sustainable integrated process since their amount is more than 85% and the impact of their treatment on environment and economy of the overall treatment process can be quite relevant. This chapter focused on the so-called smart facility that integrates processes based on thermochemical processes with the biological one targeting to increase the overall sustainability, the flexibility regarding the input biowaste composition, and the independency by the external factors affecting the waste trading.