A supervised learning method for tempo estimation of musical audio

Fu-Hai Frank Wu, J. Jang
{"title":"A supervised learning method for tempo estimation of musical audio","authors":"Fu-Hai Frank Wu, J. Jang","doi":"10.1109/MED.2014.6961438","DOIUrl":null,"url":null,"abstract":"Automatic tempo estimation for musical audio with low pulse clarity presents challenges. In order to increase the pulse clarity of the input audio signals, the proposed method applies source filtering, especially low pass filtering, to the raw audio, so there are multiple audio clips for the processes. These processes are based on tempogram derived from onset detection function to obtain the tempo pair, which is the output of tempo-pair estimator, and their relative strength by the long-term periodicity (LTP) function. Finally, a classifier-based selector chooses the best estimated results from the different paths of audio. The performance of 1st place in at-least-one-tempo-correct index and 2nd place in P-score index in the evaluation MIREX 2013 audio tempo estimation demonstrate the effectiveness of the proposed method to audio tempo estimation.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Automatic tempo estimation for musical audio with low pulse clarity presents challenges. In order to increase the pulse clarity of the input audio signals, the proposed method applies source filtering, especially low pass filtering, to the raw audio, so there are multiple audio clips for the processes. These processes are based on tempogram derived from onset detection function to obtain the tempo pair, which is the output of tempo-pair estimator, and their relative strength by the long-term periodicity (LTP) function. Finally, a classifier-based selector chooses the best estimated results from the different paths of audio. The performance of 1st place in at-least-one-tempo-correct index and 2nd place in P-score index in the evaluation MIREX 2013 audio tempo estimation demonstrate the effectiveness of the proposed method to audio tempo estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于音乐音频节奏估计的监督学习方法
低脉冲清晰度音乐音频的自动节奏估计提出了挑战。为了提高输入音频信号的脉冲清晰度,该方法对原始音频进行源滤波,特别是低通滤波,因此有多个音频片段进行处理。这些过程是基于从起始检测函数得到的节奏图来获得节奏对,这是节奏对估计器的输出,它们的相对强度由长期周期性(LTP)函数表示。最后,基于分类器的选择器从音频的不同路径中选择最佳估计结果。在MIREX 2013音频速度估计评估中,至少一个节拍正确指标第一名和P-score指标第二名的表现证明了该方法对音频速度估计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online adaptive geometry predictor of aquaculture fish-nets Mathematical study of the global dynamics of a concave gene expression model Placement of fixed modes by decentralised output feedback control Identification and switching quasi-LPV control of a four wheeled omnidirectional robot Robust anomaly detection in dynamic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1