Fiber tracking using recursive stack data structure

D. G. Duru, M. Ozkan
{"title":"Fiber tracking using recursive stack data structure","authors":"D. G. Duru, M. Ozkan","doi":"10.1109/BIYOMUT.2009.5130350","DOIUrl":null,"url":null,"abstract":"In diffusion tensor magnetic resonance imaging (DT-MRI), each voxel is assigned a tensor that describes local water diffusion. In this study, the eigenvectors of the diffusion tensor are analyzed based on stack linked list application. The aim of the study is to develop a reliable and rapid tractography algorithm. The analyzed image sample consists of 60 diffusion weighted human brain images and a null image namely the T2 image creating a set of intensity images of size 256×256×60×30. The eigenvectors of D is calculated in every pixel, apparent diffusion coefficient ADC is represented with respect to D. The idea of the proposed method is to accomplish the fiber pathway by starting from a single, selected node taking every node in other words all the information of the eigenvector of the whole brain into account. Via the proposed study, an elimination method for the main drawback in DTI literature namely the uncertainty regions are aimed.","PeriodicalId":119026,"journal":{"name":"2009 14th National Biomedical Engineering Meeting","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 14th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2009.5130350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In diffusion tensor magnetic resonance imaging (DT-MRI), each voxel is assigned a tensor that describes local water diffusion. In this study, the eigenvectors of the diffusion tensor are analyzed based on stack linked list application. The aim of the study is to develop a reliable and rapid tractography algorithm. The analyzed image sample consists of 60 diffusion weighted human brain images and a null image namely the T2 image creating a set of intensity images of size 256×256×60×30. The eigenvectors of D is calculated in every pixel, apparent diffusion coefficient ADC is represented with respect to D. The idea of the proposed method is to accomplish the fiber pathway by starting from a single, selected node taking every node in other words all the information of the eigenvector of the whole brain into account. Via the proposed study, an elimination method for the main drawback in DTI literature namely the uncertainty regions are aimed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光纤跟踪采用递归堆栈数据结构
在扩散张量磁共振成像(DT-MRI)中,每个体素被分配一个描述局部水扩散的张量。本文基于栈链表的应用,分析了扩散张量的特征向量。本研究的目的是开发一种可靠、快速的神经束成像算法。所分析的图像样本由60张扩散加权的人脑图像和一张空图像即T2图像组成,形成一组大小为256×256×60×30的强度图像。在每个像素中计算D的特征向量,表观扩散系数ADC相对于D表示。所提出的方法的思想是从单个选定的节点开始,考虑到整个大脑特征向量的所有信息,从而完成光纤通路。通过提出的研究,针对DTI文献中的主要缺陷即不确定区域,提出了一种消除方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hemodynamic correlates of mental arithmetic task in migraine Extendable intramedullary nail with mechanical loading Comparison of 980-nm and 1070-nm in endovenous laser treatment Feasibility of head imaging using multi-frequency magnetic induction tomography The impact of Daubechies Wavelet performances on Ventricular Tachyarrhythmia Patients for determination of dominant frequency bands in HRV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1