{"title":"Convection-UNet: A Deep Convolutional Neural Network for Convection Detection based on the Geo High-speed Imager of Fengyun-4B","authors":"Yufei Wang, Baihua Xiao","doi":"10.1109/prmvia58252.2023.00033","DOIUrl":null,"url":null,"abstract":"Deep convection can cause a variety of severe weather conditions such as thunderstorms, strong winds, and heavy rainfall. Satellite observations provide all-weather and multi-directional observations, facilitating the timely detection of such weather systems, which is crucial to saving lives and property. However, previous methods based on channel feature extraction and threshold filtering did not make full use of information in satellite images, which led to limitations on such complex problems as strong convection detection. In this study, we propose a novel framework of a deep learning-based model Convection-UNet to detect convection. We use channel 4 to 7 of FY-4B GHI that we select according to the microphysical properties of convection as input and radar reflectivity as label. We combine the detailed training time and test time data augmentation strategies and build a deep neural network to automatically extract spatial context features and achieve end-to-end learning. Results show that the performance of our method far exceeds the previous channel extraction combined with threshold filtering methods such as BT and BTD at least 0.24 on Fi-measure. We also show that our channel selection and data augmentation strategies are of great significance to detect convection.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep convection can cause a variety of severe weather conditions such as thunderstorms, strong winds, and heavy rainfall. Satellite observations provide all-weather and multi-directional observations, facilitating the timely detection of such weather systems, which is crucial to saving lives and property. However, previous methods based on channel feature extraction and threshold filtering did not make full use of information in satellite images, which led to limitations on such complex problems as strong convection detection. In this study, we propose a novel framework of a deep learning-based model Convection-UNet to detect convection. We use channel 4 to 7 of FY-4B GHI that we select according to the microphysical properties of convection as input and radar reflectivity as label. We combine the detailed training time and test time data augmentation strategies and build a deep neural network to automatically extract spatial context features and achieve end-to-end learning. Results show that the performance of our method far exceeds the previous channel extraction combined with threshold filtering methods such as BT and BTD at least 0.24 on Fi-measure. We also show that our channel selection and data augmentation strategies are of great significance to detect convection.