Adaptive hybrid Particle Swarm Optimization-Gravitational Search Algorithm for fuzzy controller tuning

R. Precup, Radu-Codrut David, A. Stînean, M. Radac, E. Petriu
{"title":"Adaptive hybrid Particle Swarm Optimization-Gravitational Search Algorithm for fuzzy controller tuning","authors":"R. Precup, Radu-Codrut David, A. Stînean, M. Radac, E. Petriu","doi":"10.1109/INISTA.2014.6873591","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative adaptive hybrid Particle Swarm Optimization (PSO)-Gravitational Search Algorithm (GSA) dedicated to the optimal tuning of Takagi-Sugeno-Kang PI-fuzzy controllers (T-S-K PI-FCs). The adaptive hybrid PSO-GSA is comprised from five stages, which support the solving of optimization problems with objective functions that depend on the control error and on the output sensitivity function, and the variables of the objective functions are the fuzzy controller tuning parameters. The adaptive hybrid PSO-GSA is included in the controller tuning to offer control systems with T-S-K PI-FCs that ensure a reduced process parametric sensitivity. Digital simulation and experimental results are given to validate the fuzzy controller tuning in a laboratory nonlinear servo system application.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper introduces an innovative adaptive hybrid Particle Swarm Optimization (PSO)-Gravitational Search Algorithm (GSA) dedicated to the optimal tuning of Takagi-Sugeno-Kang PI-fuzzy controllers (T-S-K PI-FCs). The adaptive hybrid PSO-GSA is comprised from five stages, which support the solving of optimization problems with objective functions that depend on the control error and on the output sensitivity function, and the variables of the objective functions are the fuzzy controller tuning parameters. The adaptive hybrid PSO-GSA is included in the controller tuning to offer control systems with T-S-K PI-FCs that ensure a reduced process parametric sensitivity. Digital simulation and experimental results are given to validate the fuzzy controller tuning in a laboratory nonlinear servo system application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊控制器自适应混合粒子群优化-引力搜索算法
本文介绍了一种创新的自适应混合粒子群优化(PSO)-引力搜索算法(GSA),用于对Takagi-Sugeno-Kang pi -模糊控制器(T-S-K pi - fc)进行最优整定。该自适应混合PSO-GSA分为5个阶段,支持求解目标函数依赖于控制误差和输出灵敏度函数的优化问题,目标函数的变量为模糊控制器整定参数。自适应混合PSO-GSA包含在控制器调谐中,以提供具有T-S-K pi - fc的控制系统,确保降低过程参数灵敏度。给出了数字仿真和实验结果,验证了模糊控制器整定在实验室非线性伺服系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1