Evaluating Segmentation Quality via Reference Segmentations in Tree-like Structure

Chao Wang, B. Peng, Xun Gong, Zeng Yu, Tianrui Li
{"title":"Evaluating Segmentation Quality via Reference Segmentations in Tree-like Structure","authors":"Chao Wang, B. Peng, Xun Gong, Zeng Yu, Tianrui Li","doi":"10.1109/ISKE47853.2019.9170278","DOIUrl":null,"url":null,"abstract":"In the image segmentation task, different understandings of the image content will lead to different granularities of segmentation results. Existing segmentation evaluation methods generally use one or more reference segmentations to evaluate the quality of image segmentation. But the limited number of reference segmentations can not give an comprehensive definition on the image granularity division. To solve the this problem, we present a segmentation evaluation method based on tree structure. Firstly, the regional granularity analysis is performed on multiple reference segmentations of the same image. A multilevel region tree is constructed and different layers in the region tree will correspond to different granularities of the reference segmentations; Secondly, for a segmentation to be evaluated, we adaptively select a layer in the region tree as a reference segmentation, which has similar region granularity with the input segmentation. The proposed evaluation method utilizes multilevel information in the image content, which leads to a more accurate and objective evaluation.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the image segmentation task, different understandings of the image content will lead to different granularities of segmentation results. Existing segmentation evaluation methods generally use one or more reference segmentations to evaluate the quality of image segmentation. But the limited number of reference segmentations can not give an comprehensive definition on the image granularity division. To solve the this problem, we present a segmentation evaluation method based on tree structure. Firstly, the regional granularity analysis is performed on multiple reference segmentations of the same image. A multilevel region tree is constructed and different layers in the region tree will correspond to different granularities of the reference segmentations; Secondly, for a segmentation to be evaluated, we adaptively select a layer in the region tree as a reference segmentation, which has similar region granularity with the input segmentation. The proposed evaluation method utilizes multilevel information in the image content, which leads to a more accurate and objective evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参考分割的树状结构分割质量评价
在图像分割任务中,对图像内容的不同理解会导致分割结果的粒度不同。现有的分割评价方法一般使用一个或多个参考分割来评价图像分割的质量。但由于参考分割的数量有限,无法对图像粒度划分给出一个全面的定义。为了解决这一问题,我们提出了一种基于树结构的分割评价方法。首先,对同一幅图像的多个参考分割进行区域粒度分析;构建多层区域树,区域树中的不同层对应参考分割的不同粒度;其次,对于待评估的分割,我们自适应地在区域树中选择一个与输入分割具有相似区域粒度的层作为参考分割;所提出的评价方法利用了图像内容中的多层次信息,使得评价更加准确和客观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1