Analyzing information transfer in time-varying multivariate data

Chaoli Wang, Hongfeng Yu, R. Grout, K. Ma, Jacqueline H. Chen
{"title":"Analyzing information transfer in time-varying multivariate data","authors":"Chaoli Wang, Hongfeng Yu, R. Grout, K. Ma, Jacqueline H. Chen","doi":"10.1109/PACIFICVIS.2011.5742378","DOIUrl":null,"url":null,"abstract":"Effective analysis and visualization of time-varying multivariate data is crucial for understanding complex and dynamic variable interaction and temporal evolution. Advances made in this area are mainly on query-driven visualization and correlation exploration. Solutions and techniques that investigate the important aspect of causal relationships among variables have not been sought. In this paper, we present a new approach to analyzing and visualizing time-varying multivariate volumetric and particle data sets through the study of information flow using the information-theoretic concept of transfer entropy. We employ time plot and circular graph to show information transfer for an overview of relations among all pairs of variables. To intuitively illustrate the influence relation between a pair of variables in the visualization, we modulate the color saturation and opacity for volumetric data sets and present three different visual representations, namely, ellipse, smoke, and metaball, for particle data sets. We demonstrate this information-theoretic approach and present our findings with three time-varying multivariate data sets produced from scientific simulations.","PeriodicalId":127522,"journal":{"name":"2011 IEEE Pacific Visualization Symposium","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2011.5742378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Effective analysis and visualization of time-varying multivariate data is crucial for understanding complex and dynamic variable interaction and temporal evolution. Advances made in this area are mainly on query-driven visualization and correlation exploration. Solutions and techniques that investigate the important aspect of causal relationships among variables have not been sought. In this paper, we present a new approach to analyzing and visualizing time-varying multivariate volumetric and particle data sets through the study of information flow using the information-theoretic concept of transfer entropy. We employ time plot and circular graph to show information transfer for an overview of relations among all pairs of variables. To intuitively illustrate the influence relation between a pair of variables in the visualization, we modulate the color saturation and opacity for volumetric data sets and present three different visual representations, namely, ellipse, smoke, and metaball, for particle data sets. We demonstrate this information-theoretic approach and present our findings with three time-varying multivariate data sets produced from scientific simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变多元数据中的信息传递分析
时变多变量数据的有效分析和可视化对于理解复杂的动态变量相互作用和时间演化至关重要。该领域的进展主要集中在查询驱动的可视化和相关性探索方面。研究变量之间因果关系的重要方面的解决方案和技术尚未得到寻求。本文利用传递熵的信息理论概念,通过信息流的研究,提出了一种分析和可视化时变多变量体积和粒子数据集的新方法。我们使用时间图和圆形图来表示信息传递,以概述所有变量对之间的关系。为了直观地说明可视化中一对变量之间的影响关系,我们调整了体积数据集的颜色饱和度和不透明度,并为粒子数据集提供了三种不同的视觉表示,即椭圆、烟雾和元球。我们展示了这种信息理论方法,并通过科学模拟产生的三个时变多元数据集展示了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page An advanced network visualization system for financial crime detection Static correlation visualization for large time-varying volume data Keynote address: Why everyone seems to be using spring embedders for network visualization, and should not Dual space analysis of turbulent combustion particle data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1