Performance Improvement of Audio-Visual Speech Recognition with Optimal Reliability Fusion

M. Tariquzzaman, Song-Min Gyu, Kim Jin Young, Na Seung You, M. A. Rashid
{"title":"Performance Improvement of Audio-Visual Speech Recognition with Optimal Reliability Fusion","authors":"M. Tariquzzaman, Song-Min Gyu, Kim Jin Young, Na Seung You, M. A. Rashid","doi":"10.1109/ICICIS.2011.58","DOIUrl":null,"url":null,"abstract":"In state-of-the-art ASR technology, audio and video (AV) information based speech recognition is one of key challenges to cope with noise problem. AV fusion is one of the robust approaches for ASR. The main issues of AV fusion is where and how to integrate the two modalities' information. To enhance the AV fusion performance the paper [1] has proposed the optimum reliability fusion (ORF) and applied the ORF to AV speaker identification. In this paper we adopt the ORF based fusion in AV based speech recognition and evaluate the performance improvement in that domain. The ORF's main idea is to introduce weighting factors in score-base reliability measure (SCRM) for solving the over- or under-estimation problem in SCRM calculation. Our AV speech recognition system is implemented for Korean digit recognition using SAMSUMG AV database. Experimental results show that ORF effectively reduce the relative error rate of 42.8% in comparison with the baseline system adopt the previous AV fusion scheme [2].","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In state-of-the-art ASR technology, audio and video (AV) information based speech recognition is one of key challenges to cope with noise problem. AV fusion is one of the robust approaches for ASR. The main issues of AV fusion is where and how to integrate the two modalities' information. To enhance the AV fusion performance the paper [1] has proposed the optimum reliability fusion (ORF) and applied the ORF to AV speaker identification. In this paper we adopt the ORF based fusion in AV based speech recognition and evaluate the performance improvement in that domain. The ORF's main idea is to introduce weighting factors in score-base reliability measure (SCRM) for solving the over- or under-estimation problem in SCRM calculation. Our AV speech recognition system is implemented for Korean digit recognition using SAMSUMG AV database. Experimental results show that ORF effectively reduce the relative error rate of 42.8% in comparison with the baseline system adopt the previous AV fusion scheme [2].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优可靠性融合的视听语音识别性能改进
在先进的ASR技术中,基于音频和视频(AV)信息的语音识别是解决噪声问题的关键挑战之一。AV融合是治疗ASR的有效方法之一。AV融合的主要问题是在哪里以及如何整合两种模式的信息。为了提高AV融合的性能,文献[1]提出了最优可靠性融合(ORF),并将其应用于AV说话人识别。本文将基于ORF的融合应用于基于AV的语音识别中,并对该领域的性能改进进行了评估。ORF的主要思想是在分数基可靠性度量(SCRM)中引入加权因子,以解决SCRM计算中的高估或低估问题。我们的AV语音识别系统是使用SAMSUMG AV数据库实现的韩文数字识别。实验结果表明,与采用先前AV融合方案的基线系统相比,ORF有效降低了42.8%的相对错误率[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telephone Clients Management System with Short Messages The Analysis on the Function of Risk Management in Construction Enterprises Development Test Case Prioritization Technique Based on Genetic Algorithm A Model to Create Graeco Latin Square Using Genetic Algorithm Perceptual System of the Dangerous Goods in Transit Escort Based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1