Segmentation of spectral objects from multi-spectral images using canonical analysis

J. Lira, A. Rodríguez
{"title":"Segmentation of spectral objects from multi-spectral images using canonical analysis","authors":"J. Lira, A. Rodríguez","doi":"10.1109/WARSD.2003.1295178","DOIUrl":null,"url":null,"abstract":"A series of problems in remote sensing require the segmentation of specific spectral objects such as water bodies, saline soils or agricultural fields. Further analysis of these objects, from multi-spectral images, may include the calculation of optical reflectance variables such as chlorophyll concentration, albedo or vegetation humidity. To derive reliable measurements of these variables a precise segmentation - from the rest of image - of the spectral objects is needed. In this work we propose a new methodology to segment spectral objects based on canonical analysis and a split-and-merge clustering algorithm. Three examples are provided to demonstrate the goodness of the methodology.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A series of problems in remote sensing require the segmentation of specific spectral objects such as water bodies, saline soils or agricultural fields. Further analysis of these objects, from multi-spectral images, may include the calculation of optical reflectance variables such as chlorophyll concentration, albedo or vegetation humidity. To derive reliable measurements of these variables a precise segmentation - from the rest of image - of the spectral objects is needed. In this work we propose a new methodology to segment spectral objects based on canonical analysis and a split-and-merge clustering algorithm. Three examples are provided to demonstrate the goodness of the methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于典型分析的多光谱图像中光谱目标分割
遥感中的一系列问题都需要对水体、盐碱地或农田等特定的光谱对象进行分割。从多光谱图像对这些物体进行进一步分析,可能包括计算光学反射率变量,如叶绿素浓度、反照率或植被湿度。为了对这些变量进行可靠的测量,需要对光谱目标进行精确的分割。在这项工作中,我们提出了一种基于典型分析和分裂合并聚类算法的光谱目标分割新方法。提供了三个例子来证明该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1