On Range Searching in the Group Model and Combinatorial Discrepancy

Kasper Green Larsen
{"title":"On Range Searching in the Group Model and Combinatorial Discrepancy","authors":"Kasper Green Larsen","doi":"10.1137/120865240","DOIUrl":null,"url":null,"abstract":"In this paper we establish an intimate connection between dynamic range searching in the group model and combinatorial discrepancy. Our result states that, for a broad class of range searching data structures (including all known upper bounds), it must hold that $t_ut_q = \\Omega(\\disc^2/\\lg n)$ where $t_u$ is the worst case update time, $t_q$ the worst case query time and $\\disc$ is the combinatorial discrepancy of the range searching problem in question. This relation immediately implies a whole range of exceptionally high and near-tight lower bounds for all of the basic range searching problems. We list a few of them in the following:\\begin{itemize}\\item For half space range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \\Omega(n^{1-1/d}/\\lg n)$. This comes within a $\\lg n \\lg \\lg n$ factor of the best known upper bound. \\item For orthogonal range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \\Omega(\\lg^{d-2+\\mu(d)}n)$, where $\\mu(d)>0$ is some small but strictly positive function of $d$.\\item For ball range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \\Omega(n^{1-1/d}/\\lg n)$.\\end{itemize}We note that the previous highest lower bound for any explicit problem, due to P{\\v a}tra{\\c s}cu [STOC'07], states that $t_q =\\Omega((\\lg n/\\lg(\\lg n+t_u))^2)$, which does however hold for a less restrictive class of data structures. Our result also has implications for the field of combinatorial discrepancy. Using textbook range searching solutions, we improve on the best known discrepancy upper bound for axis-aligned rectangles in dimensions $d \\geq 3$.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/120865240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In this paper we establish an intimate connection between dynamic range searching in the group model and combinatorial discrepancy. Our result states that, for a broad class of range searching data structures (including all known upper bounds), it must hold that $t_ut_q = \Omega(\disc^2/\lg n)$ where $t_u$ is the worst case update time, $t_q$ the worst case query time and $\disc$ is the combinatorial discrepancy of the range searching problem in question. This relation immediately implies a whole range of exceptionally high and near-tight lower bounds for all of the basic range searching problems. We list a few of them in the following:\begin{itemize}\item For half space range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \Omega(n^{1-1/d}/\lg n)$. This comes within a $\lg n \lg \lg n$ factor of the best known upper bound. \item For orthogonal range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \Omega(\lg^{d-2+\mu(d)}n)$, where $\mu(d)>0$ is some small but strictly positive function of $d$.\item For ball range searching in $d$-dimensional space, we get a lower bound of $t_u t_q = \Omega(n^{1-1/d}/\lg n)$.\end{itemize}We note that the previous highest lower bound for any explicit problem, due to P{\v a}tra{\c s}cu [STOC'07], states that $t_q =\Omega((\lg n/\lg(\lg n+t_u))^2)$, which does however hold for a less restrictive class of data structures. Our result also has implications for the field of combinatorial discrepancy. Using textbook range searching solutions, we improve on the best known discrepancy upper bound for axis-aligned rectangles in dimensions $d \geq 3$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群模型中的范围搜索与组合误差
本文建立了群体模型中动态范围搜索与组合误差之间的密切联系。我们的结果表明,对于一大类范围搜索数据结构(包括所有已知的上界),它必须满足$t_ut_q = \Omega(\disc^2/\lg n)$,其中$t_u$是最坏情况下的更新时间,$t_q$是最坏情况下的查询时间,$\disc$是所讨论的范围搜索问题的组合差异。这一关系立即暗示了所有基本范围搜索问题的整个范围的异常高和近紧下界。我们在下面列出了其中的一些:\begin{itemize}\item 对于在$d$维空间中的半空间范围搜索,我们得到了$t_u t_q = \Omega(n^{1-1/d}/\lg n)$的下界。它在已知上界的$\lg n \lg \lg n$因子范围内。 \item 对于$d$维空间的正交范围搜索,我们得到了$t_u t_q = \Omega(\lg^{d-2+\mu(d)}n)$的下界,其中$\mu(d)>0$是$d$的一个很小但严格正的函数。\item 对于$d$维空间的球距搜索,我们得到了$t_u t_q = \Omega(n^{1-1/d}/\lg n)$的下界。\end{itemize}我们注意到,由于P {\v atra }{\c scu [}STOC'07],之前任何显式问题的最高下界声明$t_q =\Omega((\lg n/\lg(\lg n+t_u))^2)$,但这确实适用于限制较少的数据结构类。我们的结果对组合误差领域也有启示意义。使用教科书范围搜索解决方案,我们改进了尺寸为$d \geq 3$的轴对齐矩形的最著名的差异上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Randomized Rounding Approach to the Traveling Salesman Problem Welfare and Profit Maximization with Production Costs Which Networks are Least Susceptible to Cascading Failures? Computing Blindfolded: New Developments in Fully Homomorphic Encryption The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1