Understanding quality of experience of heuristic-based HTTP adaptive bitrate algorithms

Babak Taraghi, A. Bentaleb, C. Timmerer, Roger Zimmermann, H. Hellwagner
{"title":"Understanding quality of experience of heuristic-based HTTP adaptive bitrate algorithms","authors":"Babak Taraghi, A. Bentaleb, C. Timmerer, Roger Zimmermann, H. Hellwagner","doi":"10.1145/3458306.3458875","DOIUrl":null,"url":null,"abstract":"Adaptive bitrate (ABR) algorithms play a crucial role in delivering the highest possible viewer's Quality of Experience (QoE) in HTTP Adaptive Streaming (HAS). Online video streaming service providers use HAS - the dominant video streaming technique on the Internet - to deliver the best QoE for their users. A viewer's delight relies heavily on how the ABR of a media player can adapt the stream's quality to the current network conditions. QoE for video streaming sessions has been assessed in many research projects to give better insight into the significant quality metrics such as startup delay and stall events. The ITU Telecommunication Standardization Sector (ITU-T) P.1203 quality evaluation model allows to algorithmically predict a subjective Mean Opinion Score (MOS) by considering various quality metrics. Subjective evaluation is the best assessment method for examining the end-user opinion over a video streaming session's experienced quality. We have conducted subjective evaluations with crowdsourced participants and evaluated the MOS of the sessions using the ITU-T P.1203 quality model. This paper's main contribution is to investigate the correspondence of subjective and objective evaluations for well-known heuristic-based ABRs.","PeriodicalId":429348,"journal":{"name":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458306.3458875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Adaptive bitrate (ABR) algorithms play a crucial role in delivering the highest possible viewer's Quality of Experience (QoE) in HTTP Adaptive Streaming (HAS). Online video streaming service providers use HAS - the dominant video streaming technique on the Internet - to deliver the best QoE for their users. A viewer's delight relies heavily on how the ABR of a media player can adapt the stream's quality to the current network conditions. QoE for video streaming sessions has been assessed in many research projects to give better insight into the significant quality metrics such as startup delay and stall events. The ITU Telecommunication Standardization Sector (ITU-T) P.1203 quality evaluation model allows to algorithmically predict a subjective Mean Opinion Score (MOS) by considering various quality metrics. Subjective evaluation is the best assessment method for examining the end-user opinion over a video streaming session's experienced quality. We have conducted subjective evaluations with crowdsourced participants and evaluated the MOS of the sessions using the ITU-T P.1203 quality model. This paper's main contribution is to investigate the correspondence of subjective and objective evaluations for well-known heuristic-based ABRs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解基于启发式的HTTP自适应比特率算法的体验质量
自适应比特率(ABR)算法在HTTP自适应流(HAS)中提供尽可能高的观看者体验质量(QoE)方面起着至关重要的作用。在线视频流服务提供商使用HAS——互联网上占主导地位的视频流技术——为用户提供最佳的QoE。观众的愉悦程度很大程度上取决于媒体播放器的ABR如何根据当前的网络条件调整流的质量。许多研究项目已经对视频流会话的QoE进行了评估,以便更好地了解重要的质量指标,如启动延迟和停机事件。国际电联电信标准化部门(ITU- t) P.1203质量评估模型允许通过考虑各种质量指标,通过算法预测主观平均意见得分(MOS)。主观评价是检验终端用户对视频流会话体验质量的意见的最佳评估方法。我们对众包参与者进行了主观评估,并使用ITU-T P.1203质量模型评估了会议的最大质量。本文的主要贡献是研究了著名的启发式abr的主客观评价的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic 3D point cloud streaming: distortion and concealment Data diet pills: in-network video quality control system for traffic usage reduction Common media client data (CMCD): initial findings ES-HAS: an edge- and SDN-assisted framework for HTTP adaptive video streaming Multi-resolution quality-based video coding system for DASH scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1