Nicola Andriolli , Alessio Giorgetti , Piero Castoldi , Gabriele Cecchetti , Isabella Cerutti , Nicola Sambo , Andrea Sgambelluri , Luca Valcarenghi , Filippo Cugini , Barbara Martini , Francesco Paolucci
{"title":"Optical networks management and control: A review and recent challenges","authors":"Nicola Andriolli , Alessio Giorgetti , Piero Castoldi , Gabriele Cecchetti , Isabella Cerutti , Nicola Sambo , Andrea Sgambelluri , Luca Valcarenghi , Filippo Cugini , Barbara Martini , Francesco Paolucci","doi":"10.1016/j.osn.2021.100652","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the last twenty years, optical networks have witnessed </span>recurrent<span> changes in their management and control architecture. In this paper, we present a historical timeline and a future perspective of the evolution of optical network management and control deployed for Wavelength Switched Optical Networks (WSON), Elastic Optical Networks (EON) and (multilayer) Data Center Networks.</span></p><p><span><span>Early implementations of WSON envisaged a static and centralized provisioning approach supported by the Management Plane only. Gradually, the requirement of accommodating more network dynamicity in WSON, and later in EON, pushed the adoption of a distributed control, mostly supported by vendor-dependent implementations of the Generalized MultiProtocol Label Switching (GMPLS) protocol suite. The drawbacks of the fully distributed GMPLS-based control, such as resource contention, suboptimal resource usage, and complex computations (e.g., to account for </span>physical layer constraints) showed the necessity to bring back some of the routing/provisioning functions to a centralized Path Computation Element (PCE) capable of accounting for e.g. </span>physical impairments and interworking with GMPLS.</p><p>The centralized control then gained its momentum and brought a radical change in network control, through the separation of data and control plane introduced by the paradigm of Software Defined Networking (SDN). Such an approach has been gradually extended to optical network control.</p><p><span>The paper, eventually, presents the most advanced control techniques, namely the intent-based networking, the observe/decide/act state-based approach providing for autonomic<span> optical network and the (closed-loop) zero-touch service management approach. Advanced traffic conditioning techniques are also detailed, namely the in-band telemetry and the exploitation of Programming Protocol-Independent Packet Processors (P4) language capabilities as well as solutions tailored for data center networks: all of them are still in a research stage and to be integrated within future optical </span></span>network architectures.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"44 ","pages":"Article 100652"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000497","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 10
Abstract
In the last twenty years, optical networks have witnessed recurrent changes in their management and control architecture. In this paper, we present a historical timeline and a future perspective of the evolution of optical network management and control deployed for Wavelength Switched Optical Networks (WSON), Elastic Optical Networks (EON) and (multilayer) Data Center Networks.
Early implementations of WSON envisaged a static and centralized provisioning approach supported by the Management Plane only. Gradually, the requirement of accommodating more network dynamicity in WSON, and later in EON, pushed the adoption of a distributed control, mostly supported by vendor-dependent implementations of the Generalized MultiProtocol Label Switching (GMPLS) protocol suite. The drawbacks of the fully distributed GMPLS-based control, such as resource contention, suboptimal resource usage, and complex computations (e.g., to account for physical layer constraints) showed the necessity to bring back some of the routing/provisioning functions to a centralized Path Computation Element (PCE) capable of accounting for e.g. physical impairments and interworking with GMPLS.
The centralized control then gained its momentum and brought a radical change in network control, through the separation of data and control plane introduced by the paradigm of Software Defined Networking (SDN). Such an approach has been gradually extended to optical network control.
The paper, eventually, presents the most advanced control techniques, namely the intent-based networking, the observe/decide/act state-based approach providing for autonomic optical network and the (closed-loop) zero-touch service management approach. Advanced traffic conditioning techniques are also detailed, namely the in-band telemetry and the exploitation of Programming Protocol-Independent Packet Processors (P4) language capabilities as well as solutions tailored for data center networks: all of them are still in a research stage and to be integrated within future optical network architectures.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks