Two-stage structure aware image inpainting based on generative adversarial networks

Jin Wang, Xi Zhang, Chen Wang, Qing Zhu, Baocai Yin
{"title":"Two-stage structure aware image inpainting based on generative adversarial networks","authors":"Jin Wang, Xi Zhang, Chen Wang, Qing Zhu, Baocai Yin","doi":"10.1145/3444685.3446260","DOIUrl":null,"url":null,"abstract":"In recent years, the image inpainting technology based on deep learning has made remarkable progress, which can better complete the complex image inpainting task compared with traditional methods. However, most of the existing methods can not generate reasonable structure and fine texture details at the same time. To solve this problem, in this paper we propose a two-stage image inpainting method with structure awareness based on Generative Adversarial Networks, which divides the inpainting process into two sub tasks, namely, image structure generation and image content generation. In the former stage, the network generates the structural information of the missing area; while in the latter stage, the network uses this structural information as a prior, and combines the existing texture and color information to complete the image. Extensive experiments are conducted to evaluate the performance of our proposed method on Places2, CelebA and Paris Streetview datasets. The experimental results show the superior performance of the proposed method compared with other state-of-the-art methods qualitatively and quantitatively.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the image inpainting technology based on deep learning has made remarkable progress, which can better complete the complex image inpainting task compared with traditional methods. However, most of the existing methods can not generate reasonable structure and fine texture details at the same time. To solve this problem, in this paper we propose a two-stage image inpainting method with structure awareness based on Generative Adversarial Networks, which divides the inpainting process into two sub tasks, namely, image structure generation and image content generation. In the former stage, the network generates the structural information of the missing area; while in the latter stage, the network uses this structural information as a prior, and combines the existing texture and color information to complete the image. Extensive experiments are conducted to evaluate the performance of our proposed method on Places2, CelebA and Paris Streetview datasets. The experimental results show the superior performance of the proposed method compared with other state-of-the-art methods qualitatively and quantitatively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成对抗网络的两阶段结构感知图像绘制
近年来,基于深度学习的图像绘制技术取得了显著的进步,与传统方法相比,可以更好地完成复杂的图像绘制任务。然而,现有的方法大多不能同时生成合理的结构和精细的纹理细节。为了解决这一问题,本文提出了一种基于生成式对抗网络的具有结构感知的两阶段图像绘制方法,该方法将图像绘制过程分为图像结构生成和图像内容生成两个子任务。在前一阶段,网络生成缺失区域的结构信息;在后一阶段,网络将这些结构信息作为先验信息,并结合已有的纹理和颜色信息来完成图像。我们进行了大量的实验来评估我们提出的方法在Places2、CelebA和巴黎街景数据集上的性能。实验结果表明,该方法在定性和定量上均优于其他先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1