{"title":"An Adaptive Discrete Particle Swarm Optimization for Mapping Real-Time Applications onto Network-on-a-Chip based MPSoCs","authors":"J. B. D. Barros, R. C. Sampaio, C. Llanos","doi":"10.1145/3338852.3339835","DOIUrl":null,"url":null,"abstract":"This paper presents a modified version of the well-known Particle Swarm Optimization (PSO) algorithm as an alternative for the single-objective Genetic Algorithm (GA) that is currently the state-of-the-art method to map real-time applications tasks onto Multiple Processors System-on-a-Chip (MPSoC) using preemptive capable wormhole-based Network-on-a-Chip (NoC) as their communication architecture. A statistical study based on an experimental setup has been performed to compare the GA-based task mapper and the proposed method by using a real-time application as a benchmark, as well as a group of randomly generated ones. Preliminary results have shown that our method is capable of achieving quicker convergence than the GA-based method, and it even produces better results when the application utilization is smaller than the available processing capacity, i.e., a fully schedulable mapping solution exists.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a modified version of the well-known Particle Swarm Optimization (PSO) algorithm as an alternative for the single-objective Genetic Algorithm (GA) that is currently the state-of-the-art method to map real-time applications tasks onto Multiple Processors System-on-a-Chip (MPSoC) using preemptive capable wormhole-based Network-on-a-Chip (NoC) as their communication architecture. A statistical study based on an experimental setup has been performed to compare the GA-based task mapper and the proposed method by using a real-time application as a benchmark, as well as a group of randomly generated ones. Preliminary results have shown that our method is capable of achieving quicker convergence than the GA-based method, and it even produces better results when the application utilization is smaller than the available processing capacity, i.e., a fully schedulable mapping solution exists.