Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection

Luis Ferraz, Xavier Binefa, F. Moreno-Noguer
{"title":"Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection","authors":"Luis Ferraz, Xavier Binefa, F. Moreno-Noguer","doi":"10.1109/CVPR.2014.71","DOIUrl":null,"url":null,"abstract":"We propose a real-time, robust to outliers and accurate solution to the Perspective-n-Point (PnP) problem. The main advantages of our solution are twofold: first, it in- tegrates the outlier rejection within the pose estimation pipeline with a negligible computational overhead, and sec- ond, its scalability to arbitrarily large number of correspon- dences. Given a set of 3D-to-2D matches, we formulate pose estimation problem as a low-rank homogeneous sys- tem where the solution lies on its 1D null space. Outlier correspondences are those rows of the linear system which perturb the null space and are progressively detected by projecting them on an iteratively estimated solution of the null space. Since our outlier removal process is based on an algebraic criterion which does not require computing the full-pose and reprojecting back all 3D points on the image plane at each step, we achieve speed gains of more than 100× compared to RANSAC strategies. An extensive exper- imental evaluation will show that our solution yields accu- rate results in situations with up to 50% of outliers, and can process more than 1000 correspondences in less than 5ms.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

We propose a real-time, robust to outliers and accurate solution to the Perspective-n-Point (PnP) problem. The main advantages of our solution are twofold: first, it in- tegrates the outlier rejection within the pose estimation pipeline with a negligible computational overhead, and sec- ond, its scalability to arbitrarily large number of correspon- dences. Given a set of 3D-to-2D matches, we formulate pose estimation problem as a low-rank homogeneous sys- tem where the solution lies on its 1D null space. Outlier correspondences are those rows of the linear system which perturb the null space and are progressively detected by projecting them on an iteratively estimated solution of the null space. Since our outlier removal process is based on an algebraic criterion which does not require computing the full-pose and reprojecting back all 3D points on the image plane at each step, we achieve speed gains of more than 100× compared to RANSAC strategies. An extensive exper- imental evaluation will show that our solution yields accu- rate results in situations with up to 50% of outliers, and can process more than 1000 correspondences in less than 5ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有代数离群值拒绝的PnP问题的快速解
我们提出了一种实时的、对异常值的鲁棒性和精确的视角-n-点(PnP)问题的解决方案。我们的解决方案的主要优点有两个:首先,它在姿态估计管道中集成了异常值抑制,计算开销可以忽略不计;其次,它的可扩展性可以用于任意数量的对应。给定一组三维到二维匹配,我们将姿态估计问题表述为一个解位于其一维零空间的低秩齐次系统。离群对应是那些干扰零空间的线性系统的行,通过将它们投影到零空间的迭代估计解上来逐步检测。由于我们的异常值去除过程是基于代数准则,不需要在每一步计算全姿态并重新投影图像平面上的所有3D点,因此我们实现了超过100倍的速度增益;与RANSAC策略相比。广泛的实验评估将表明,我们的解决方案在高达50%的异常值的情况下产生准确的结果,并且可以在不到5ms的时间内处理超过1000个对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1