CUKNN: A parallel implementation of K-nearest neighbor on CUDA-enabled GPU

Shenshen Liang, Cheng Wang, Ying Liu, Liheng Jian
{"title":"CUKNN: A parallel implementation of K-nearest neighbor on CUDA-enabled GPU","authors":"Shenshen Liang, Cheng Wang, Ying Liu, Liheng Jian","doi":"10.1109/YCICT.2009.5382329","DOIUrl":null,"url":null,"abstract":"Recent development in Graphics Processing Units (GPUs) has enabled inexpensive high performance computing for general-purpose applications. Due to GPU's tremendous computing capability, it has emerged as the co-processor of the CPU to achieve a high overall throughput. CUDA programming model provides the programmers adequate C language like APIs to better exploit the parallel power of the GPU. K-nearest neighbor is a widely used classification technique and has significant applications in various domains. The computational-intensive nature of KNN requires a high performance implementation. In this paper, we present a CUDA-based parallel implementation of KNN, CUKNN, using CUDA multi-thread model. Various CUDA optimization techniques are applied to maximize the utilization of the GPU. CUKNN outperforms significantly and achieve up to 15.2X speedup. It also shows good scalability when varying the dimension of the training dataset and the number of records in training dataset.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Recent development in Graphics Processing Units (GPUs) has enabled inexpensive high performance computing for general-purpose applications. Due to GPU's tremendous computing capability, it has emerged as the co-processor of the CPU to achieve a high overall throughput. CUDA programming model provides the programmers adequate C language like APIs to better exploit the parallel power of the GPU. K-nearest neighbor is a widely used classification technique and has significant applications in various domains. The computational-intensive nature of KNN requires a high performance implementation. In this paper, we present a CUDA-based parallel implementation of KNN, CUKNN, using CUDA multi-thread model. Various CUDA optimization techniques are applied to maximize the utilization of the GPU. CUKNN outperforms significantly and achieve up to 15.2X speedup. It also shows good scalability when varying the dimension of the training dataset and the number of records in training dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUKNN:在支持cuda的GPU上并行实现k近邻
图形处理单元(gpu)的最新发展为通用应用程序提供了廉价的高性能计算。由于GPU的巨大计算能力,它已经成为CPU的协处理器,以实现高的整体吞吐量。CUDA编程模型为程序员提供了足够的C语言,如api,以更好地利用GPU的并行能力。k近邻分类是一种广泛使用的分类技术,在各个领域都有重要的应用。KNN的计算密集型特性需要高性能的实现。本文采用CUDA多线程模型,提出了一种基于CUDA的KNN并行实现方法CUKNN。各种CUDA优化技术被应用于最大限度地利用GPU。CUKNN的性能明显优于它,可以实现高达15.2倍的加速。在改变训练数据集的维数和训练数据集的记录数时,也表现出良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1