Identification of multilayer structures using secondary electron yield curves: effect of native oxide films on EUV-patterned mask inspection

S. Iida, K. Ohya, R. Hirano, Hidehiro Watanabe
{"title":"Identification of multilayer structures using secondary electron yield curves: effect of native oxide films on EUV-patterned mask inspection","authors":"S. Iida, K. Ohya, R. Hirano, Hidehiro Watanabe","doi":"10.1117/12.2218944","DOIUrl":null,"url":null,"abstract":"The impact of EUV mask surface conditions on the patterned mask inspection process was investigated. The results of simulations show that the defect detection capability is degraded by the formation of a native oxide film on the surface of a Ru capped multilayer. This effect was assessed by constructing the secondary electron yield (SEY) curves of the EUV mask materials. These experimentally-obtained SEY curves were examined using semi-empirical Monte Carlo simulations. The simulation results demonstrated that a native oxide film increased the SEY, and that this effect varied with film thickness. The results suggest that defect detection capability will vary according to the thickness of the native oxide when employing an inspection system using an electron beam technique. Also of interest is the finding that the thickness of the native oxide film can be ascertained by fitting the SEY curves.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2218944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The impact of EUV mask surface conditions on the patterned mask inspection process was investigated. The results of simulations show that the defect detection capability is degraded by the formation of a native oxide film on the surface of a Ru capped multilayer. This effect was assessed by constructing the secondary electron yield (SEY) curves of the EUV mask materials. These experimentally-obtained SEY curves were examined using semi-empirical Monte Carlo simulations. The simulation results demonstrated that a native oxide film increased the SEY, and that this effect varied with film thickness. The results suggest that defect detection capability will vary according to the thickness of the native oxide when employing an inspection system using an electron beam technique. Also of interest is the finding that the thickness of the native oxide film can be ascertained by fitting the SEY curves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二次电子产率曲线识别多层结构:原生氧化膜对euv图案掩膜检测的影响
研究了EUV掩模表面条件对图案掩模检测过程的影响。模拟结果表明,在覆钌多层材料表面形成天然氧化膜会降低缺陷检测能力。通过构建EUV掩膜材料的二次电子产率(SEY)曲线来评价这种效应。这些实验获得的SEY曲线使用半经验蒙特卡罗模拟进行了检验。模拟结果表明,天然氧化膜增加了SEY,并且这种效果随膜的厚度而变化。结果表明,当采用电子束技术的检测系统时,缺陷检测能力将根据天然氧化物的厚度而变化。同样令人感兴趣的是,可以通过拟合SEY曲线来确定天然氧化膜的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEM based overlay measurement between resist and buried patterns Contrast optimization for 0.33NA EUV lithography Analysis of wafer heating in 14nm DUV layers GPU accelerated Monte-Carlo simulation of SEM images for metrology Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1